Patents Assigned to Chipmos Technologies (Bermuda) Ltd.
  • Patent number: 7888783
    Abstract: A chip package structure includes a chip-placed frame that having an adhesive layer thereon; a chip includes a plurality of pads on an active surface thereon, and is provided on the adhesive layer; a package structure is covered around the four sides of the chip-placed frame, and the height of the package structure is larger than the height of the chips; a plurality of patterned metal traces is electrically connected to the plurality of pads, another end is extended out to cover the surface of the package structure; a patterned protective layer is covered on the patterned metal traces and another end of the patterned metal traces is exposed; a plurality of patterned UBM layer is formed on the extended surface of the patterned metal traces; and a plurality of conductive elements is formed on the patterned UBM layer and is electrically connected to one end of the exposed portion of the patterned metal traces.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: February 15, 2011
    Assignees: Chipmos Technologies Inc, Chipmos Technologies (Bermuda) Ltd
    Inventors: Geng-Shin Shen, Yu-Ren Chen
  • Patent number: 7888172
    Abstract: A chip package structure is provided, includes a chip that having a plurality of pads and an adhesive layer on the back side; an encapsulated structure is covered around the four sides of the chip to expose the pads, and the through holes is formed within the encapsulated structure; a patterned first protective layer is formed on the portion surface of encapsulated structure, the portion of active surface of the chips, and the pads of the chip and the through holes are to be exposed; a metal layer is formed on the portion surface of the patterned first protective layer and formed to electrically connect the pads and to fill with the through holes; the patterned second protective layer is formed on the patterned first protective layer and the portion of metal layer, and the portion surface of metal layer is to be exposed; a patterned UBM layer is formed on the exposed surface of the metal layer and the portion surface of the patterned second protective layer; and the conductive elements is formed on the patter
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: February 15, 2011
    Assignees: Chipmos Technologies Inc, Chipmos Technologies (Bermuda) Ltd
    Inventor: Cheng-Tang Huang
  • Patent number: 7879653
    Abstract: A leadless semiconductor package with an electroplated layer embedded in an encapsulant and its manufacturing processes are disclosed. The package primarily includes a half-etched leadframe, a chip, an encapsulant, and an electroplated layer. The half-etched leadframe has a plurality of leads and a plurality of outer pads integrally connected to the leads. The encapsulant encapsulates the chip and the leads and has a plurality of cavities reaching to the outer pads to form an electroplated layer on the outer pads and embedded in the cavities. Accordingly, under the advantages of lower cost and higher thermal dissipation, the conventional substrates and their solder masks for BGA (Ball Grid Array) or LGA (Land Grid Array) packages can be replaced. The leads encapsulated in the encapsulant have a better bonding strength and the electroplated layer embedded in the encapsulant will not be damaged during shipping, handling, or storing the semiconductor packages.
    Type: Grant
    Filed: August 10, 2008
    Date of Patent: February 1, 2011
    Assignees: Chipmos Technologies (Bermuda) Ltd., Chipmos Technologies Inc.
    Inventor: Hung-Tsun Lin
  • Patent number: 7851270
    Abstract: A manufacturing process for a chip package structure is provided. First, a patterned conductive layer having a plurality of first openings and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned conductive layer such that the chips and the patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires passing through the first openings of the patterned conductive layer. At least one molding compound is formed to encapsulate the patterned conductive layer, the patterned solder resist layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 14, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7851896
    Abstract: A Quad Flat Non-leaded (QFN) chip package including a patterned conductive layer, a first solder resist layer, a chip, a plurality of bonding wires and a molding compound is provided. The patterned conductive layer has a first surface and a second surface opposite to each other. The first solder resist layer is disposed on the first surface, wherein a part of the first surface is exposed by the first solder resist layer. The chip is disposed on the first solder resist layer, wherein the first solder resist layer is between the patterned conductive layer and the chip. The bonding wires are electrically connected to the chip and the patterned conductive layer exposed by the first solder resist layer. The molding compound encapsulates the pattern conductive layer, the first solder resist layer, the chip and the bonding wires.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: December 14, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin, Shih-Wen Chou
  • Patent number: 7851262
    Abstract: A manufacturing process for a chip package structure is provided. First, a patterned conductive layer and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned conductive layer such that the chips and the patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires, wherein the chips and the bonding wires are at the same side of the patterned conductive layer. A molding compound is formed to encapsulate the patterned conductive layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: December 14, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7847414
    Abstract: A chip package structure including a first substrate, a second substrate, a plurality of bumps, a first B-staged adhesive layer and a second B-staged adhesive layer is provided. The first substrate has a plurality of first bonding pads. The second substrate has a plurality of second bonding pads, and the second substrate is disposed above the first substrate. The bumps are disposed between the first substrate and the second substrate, wherein each of the first bonding pads is respectively electrically connected to one of the second bonding pads via one of the bumps. The first B-staged adhesive layer is adhered on the first substrate. The second B-staged adhesive layer is adhered between the first B-staged adhesive layer and the second substrate, wherein the first B-staged adhesive layer and the second B-staged adhesive layer encapsulate the bumps.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 7, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, David Wei Wang
  • Patent number: 7843054
    Abstract: A chip package including a circuit substrate, a chip, a B-staged adhesive layer, a leadframe, a number of first bonding wires, a number of second bonding wires, and a number of third bonding wires. The chip is disposed on the circuit substrate. The B-staged adhesive layer is disposed on the circuit substrate. The leadframe is disposed on the circuit substrate and includes a number of leads. Portions of the leads are embedded in the B-staged adhesive layer, and an end of each of the leads is exposed by the B-staged adhesive layer. The first bonding wires are electrically connected between the chip and the circuit substrate. The second bonding wires are electrically connected between the chip and the leads. The third bonding wires are electrically connected between the leads and the circuit substrate. In addition, a manufacturing method of a chip package is also provided.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: November 30, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventor: Shih-Wen Chou
  • Patent number: 7834432
    Abstract: A chip package having asymmetric molding includes a lead frame, a chip, an adhesive layer, bonding wires and a molding compound. The lead frame includes a turbulent plate and a frame body having inner lead portions and outer lead portions. The turbulent plate is bended downwards to form a concave portion. The first end of the turbulent plate is connected to the frame body, and the second end is lower than the inner lead portions. The chip is fixed under the inner lead portions through the adhesive layer. The bonding wires are connected between the chip and the inner lead portions. The molding compound encapsulates the chip, the bonding wires, and the turbulent plate. The ratio between the thickness of the molding compound over and under the concave portion is larger than 1. The thickness of the molding compound under and over the outer lead portions is not equal.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: November 16, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd
    Inventors: Wu-Chang Tu, Geng-Shin Shen
  • Patent number: 7816771
    Abstract: The present invention provides a stacked chip package structure with leadframe having inner leads with transfer pad, comprising: a leadframe composed of a plurality of inner leads arranged in rows facing each other, a plurality of outer leads, and a die pad, wherein the die pad is provided between the plurality of inner leads arranged in rows facing each other and vertically distant from the plurality of inner leads; an offset chip-stacked structure formed with a plurality of chips stacked together, the offset chip-stacked structure being set on the die pad and electrically connected to the plurality of inner leads arranged in rows facing each other; and an encapsulant covering the offset chip-stacked structure and the leadframe, the plurality of outer leads extending out of said encapsulant; the improvement of which being that the inner leads of the leadframe are coated with an insulating layer and a plurality of metal pads are selectively formed on the insulating layer.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: October 19, 2010
    Assignees: Chipmos Technologies Inc., Chipmos Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Wu-Chang Tu
  • Publication number: 20100244278
    Abstract: A stacked multichip package comprises a first chip having a first active surface and a first rear surface, a first chip carrier having a first opening and being configured to carrier the first active surface, a plurality of first conductive leads passing through the first opening and being configured to electrically connect the first active surface and the first chip carrier, a second chip having a second active surface and a second rear surface, an adhesive layer configured to enclose the first conductive leads and to electrically couple the first chip carrier to the second rear surface, a second chip carrier having a second opening and being electrically connected to the second active surface, and a plurality of conductive leads passing through the second opening and being configured to electrically connect the second active surface and the second chip carrier.
    Type: Application
    Filed: September 10, 2009
    Publication date: September 30, 2010
    Applicants: CHIPMOS TECHNOLOGIES INC., CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventor: Geng Hsin Shen
  • Patent number: 7803666
    Abstract: A manufacturing process for a Quad Flat Non-leaded (QFN) chip package structure is provided. First, a patterned conductive layer and a patterned solder resist layer on the patterned conductive layer are provided. A plurality of chips are bonded onto the patterned solder resist layer such that the patterned solder resist layer are between the chips and the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires, wherein the chips and the bonding wires are at the same side of the patterned conductive layer. At least one molding compound is formed to encapsulate the patterned conductive layer, the patterned solder resist layer, the chips and the bonding wires. Then, the molding compound, the patterned conductive layer and the patterned solder resist layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 28, 2010
    Assignees: ChipMOS Technologies INc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7803667
    Abstract: A manufacturing process for a Quad Flat Non-leaded (QFN) chip package structure is provided. First, a conductive layer having recesses and a patterned solder resist layer on the conductive layer are provided, wherein the patterned solder resist layer covers the recesses of the conductive layer. A part of the conductive layer uncovered by the patterned solder resist layer is removed so as to form a patterned conductive layer. Chips are bonded onto the patterned conductive layer such that the patterned solder resist layer and the chips are at the same side of the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by bonding wires, wherein the chips and the bonding wires are at the same side of the patterned conductive layer. At least one molding compound is formed and the molding compound and the patterned conductive layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 28, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7795079
    Abstract: A manufacturing process for a Quad Flat Non-leaded (QFN) chip package structure is provided. First, a conductive layer having a plurality of recesses and a patterned solder resist layer on the conductive layer are provided, wherein the patterned solder resist layer covers the recesses of the conductive layer. A plurality of chips are bonded onto the patterned solder resist layer such that the patterned solder resist layer is between the chips and the conductive layer. The chips are electrically connected to the conductive layer by a plurality of bonding wires. At least one molding compound is formed to encapsulate the conductive layer, the patterned solder resist layer, the chips and the bonding wires. A part of the conductive layer exposed by the patterned solder resist layer is removed so as to form a patterned conductive layer. Then, the molding compound and the patterned conductive layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 14, 2010
    Assignees: ChipMoS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7790514
    Abstract: A manufacturing process for a chip package structure is provided. First, a patterned conductive layer having a plurality of first openings and a first patterned solder resist layer on the patterned conductive layer are provided. A second patterned solder resist layer is formed on the patterned conductive layer such that the first patterned solder resist layer and the second patterned solder resist layer are disposed at two opposite surfaces of the patterned conductive layer. Chips are bonded onto the first patterned solder resist layer such that the first patterned solder resist layer is between the chips and the patterned conductive layer. The chips are electrically connected to the patterned conductive layer by a plurality of bonding wires passing through the first openings. At least one molding compound is formed and the molding compound, the first patterned solder resist layer and the second patterned solder resist layer are separated.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: September 7, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Chun-Ying Lin
  • Patent number: 7786595
    Abstract: The present invention provides a chip-stacked package structure with leadframe having bus bar, comprising: a leadframe composed of a plurality of inner leads arranged in rows facing each other, a plurality of outer leads, and a die pad, wherein the die pad is provided between the plurality of inner leads and is vertically distant from the plurality of inner leads; a chip-stacked structure formed with a plurality of chips that stacked together and set on the die pad, the plurality of chips and the plurality of inner leads being electrically connected with each other; and an encapsulant covering over the chip-stacked package structure and the leadframe, in which the leadframe comprises at least a bus bar, which is provided between the plurality of inner leads arranged in rows facing each other and the die pad.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: August 31, 2010
    Assignees: Chipmos Technologies Inc., Chipmos Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, Wu-Chang Tu
  • Publication number: 20100187692
    Abstract: A chip package including a base, a chip, a molding compound and a plurality of outer terminals is provided. The base is essentially consisted of a patterned circuit layer having a first surface and a second surface opposite to each other and a solder mask disposed on the second surface, wherein the solder mask has a plurality of first openings by which part of the patterned circuit layer is exposed. The chip is disposed on the first surface and is electrically connected to the patterned circuit layer. The molding compound covers the pattern circuit layer and fixes the chip onto the patterned circuit layer. The outer terminals are disposed in the first openings and electrically connected to the patterned circuit layer.
    Type: Application
    Filed: April 8, 2010
    Publication date: July 29, 2010
    Applicants: CHIPMOS TECHNOLOGIES INC., CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Yu-Tang Pan, Cheng-Ting Wu, Shih-Wen Chou, Hui-Ping Liu
  • Publication number: 20100187691
    Abstract: A chip package including a base, a chip, a molding compound and a plurality of outer terminals is provided. The base is essentially consisted of a patterned circuit layer having a first surface and a second surface opposite to each other and a solder mask disposed on the second surface, wherein the solder mask has a plurality of first openings by which part of the patterned circuit layer is exposed. The chip is disposed on the first surface and is electrically connected to the patterned circuit layer. The molding compound covers the pattern circuit layer and fixes the chip onto the patterned circuit layer. The outer terminals are disposed in the first openings and electrically connected to the patterned circuit layer.
    Type: Application
    Filed: April 8, 2010
    Publication date: July 29, 2010
    Applicants: CHIPMOS TECHNOLOGIES INC., CHIPMOS TECHNOLOGIES (BERMUDA) LTD.
    Inventors: Yu-Tang Pan, Cheng-Ting Wu, Shih-Wen Chou, Hui-Ping Liu
  • Patent number: 7749806
    Abstract: A fabricating process of a chip package structure is provided. First, a first substrate having a plurality of first bonding pads and a second substrate having a plurality of second bonding pads are provide, wherein a plurality of bumps are formed on the first bonding pads of the first substrate. A first two-stage adhesive layer is formed on the first substrate and is B-stagized to form a first B-staged adhesive layer. A second two-stage adhesive layer is formed on the second substrate and is B-stagized to form a second B-staged adhesive layer. Then, the first substrate and the second substrate are bonded via the first B-staged adhesive layer and the second B-staged adhesive layer such that each of the first bonding pads is respectively electrically connected to one of the second bonding pads via one of the bumps.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: July 6, 2010
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, David Wei Wang
  • Patent number: 7741149
    Abstract: A chip package structure includes a chip, a lead frame, first and second bonding wires, an upper encapsulant, a first lower encapsulant, and a second lower encapsulant. The chip has an active surface, a back surface, and chip bonding pads disposed on the active surface. The lead frame having an upper surface and a lower surface includes a die pad, leads, and at least a bus bar. The back surface of the chip is adhered to the die pad. The leads surround the die pad. The bus bar is disposed between the die pad and the leads. The first bonding wires are connected to the chip bonding pads and the bus bar. The second bonding wires are connected to the bus bar and the leads. The upper encapsulant encapsulates the upper surface of the lead frame, the chip, the first bonding wires, and the second bonding wires.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: June 22, 2010
    Assignee: ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Yong-Chao Qiao, Yan-Yi Wu, Jie-Hung Chiou