Patents Assigned to Genomatica, Inc.
  • Patent number: 10597684
    Abstract: The invention is directed to a non-naturally occurring microbial organism comprising a first attenuation of a succinyl-CoA synthetase or transferase and at least a second attenuation of a succinyl-CoA converting enzyme or a gene encoding a succinate producing enzyme within a multi-step pathway having a net conversion of succinyl-CoA to succinate.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: March 24, 2020
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Stephen J. Van Dien, Priti Pharkya, Tae Hoon Yang, Jungik Choi
  • Patent number: 10570074
    Abstract: The disclosure relates to the field of specialty chemicals. In particular, the disclosure provides novel 1,3-fatty-diol compounds and derivatives thereof which are useful e.g., in the production of personal care products, surfactants, detergents, polymers, paints, coatings, and as emulsifiers, emollients, and thickeners in cosmetics and foods, as industrial solvents and plasticizers, etc.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: February 25, 2020
    Assignee: GENOMATICA, INC.
    Inventor: Haibo Wang
  • Patent number: 10563180
    Abstract: Described herein are non-natural NAD+-dependent alcohol dehydrogenases (ADHs) capable of at least two fold greater conversion of methanol or ethanol to formaldehyde or acetaldehyde, respectively, as compared to its unmodified counterpart. Nucleic acids encoding the non-natural alcohol dehydrogenases, as well as expression constructs including the nucleic acids, and engineered cells comprising the nucleic acids or expression constructs are described. Also described are engineered cells expressing a non-natural NAD+-dependent alcohol dehydrogenase, optionally include one or more additional metabolic pathway transgene(s), methanol metabolic pathway genes, target product pathway genes, cell culture compositions including the cells, methods for promoting production of the target product or intermediate thereof from the cells, compositions including the target product or intermediate, and products made from the target product or intermediate.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: February 18, 2020
    Assignee: Genomatica, Inc.
    Inventors: Stefan Andrae, Michael Patrick Kuchinskas, Jingyi Li, Harish Nagarajan, Priti Pharkya
  • Patent number: 10563231
    Abstract: Compositions and methods for producing aldehydes, alkanes, and alkenes are described herein. The aldehydes, alkanes, and alkenes can be used in biofuels.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: February 18, 2020
    Assignee: Genomatica, Inc.
    Inventors: Andreas W. Schirmer, Mathew A. Rude, Shane A. Brubaker
  • Patent number: 10550411
    Abstract: The invention provides a non-naturally occurring microbial organism having an acetyl-CoA pathway and the capability of utilizing syngas or syngas and methanol. In one embodiment, the invention provides a non-naturally occurring microorganism, comprising one or more exogenous proteins conferring to the microorganism a pathway to convert CO, CO2 and/or H2 to acetyl-coenzyme A (acetyl-CoA), methyl tetrahydrofolate (methyl-THF) or other desired products, wherein the microorganism lacks the ability to convert CO or CO2 and H2 to acetyl-CoA or methyl-THF in the absence of the one or more exogenous proteins. For example, the microbial organism can contain at least one exogenous nucleic acid encoding an enzyme or protein in an acetyl-CoA pathway. The microbial organism is capable of utilizing synthesis gases comprising CO, CO2 and/or H2, alone or in combination with methanol, to produce acetyl-CoA.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: February 4, 2020
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Christophe H. Schilling, Anthony P. Burgard, John D. Trawick
  • Patent number: 10513716
    Abstract: The invention provides non-naturally occurring microbial organisms containing a fatty alcohol, fatty aldehyde or fatty acid pathway, wherein the microbial organisms selectively produce a fatty alcohol, fatty aldehyde or fatty acid of a specified length. Also provided are non-naturally occurring microbial organisms having a fatty alcohol, fatty aldehyde or fatty acid pathway, wherein the microbial organisms further include an acetyl-CoA pathway. In some aspects, the microbial organisms of the invention have select gene disruptions or enzyme attenuations that increase production of fatty alcohols, fatty aldehydes or fatty acids. The invention additionally provides methods of using the above microbial organisms to produce a fatty alcohol, a fatty aldehyde or a fatty acid.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: December 24, 2019
    Assignee: Genomatica, Inc.
    Inventors: Robin E. Osterhout, Anthony P. Burgard
  • Patent number: 10487032
    Abstract: An object of the present invention is to provide high-quality 1,4BG capable of working out to a raw material of PBT with good color tone, by efficiently removing and refining impurities mixed when producing a biomass-derived 1,4BG on an industrial scale and the present invention relates to a production method of refined 1,4BG, where a crude 1,4BG-containing solution is obtained from refined raw material 1,4BG obtained by removing bacterial cells, salt contents and water from the fermentation culture medium, through a step of removing high-boiling-point components and/or low-boiling-point components by distillation and/or a step of converting an unsaturated compound to a hydride and the target product is obtained as a side stream in a further distillation step.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: November 26, 2019
    Assignees: MITSUBISHI CHEMICAL CORPORATION, GENOMATICA, INC.
    Inventors: Masaru Utsunomiya, Yusuke Izawa, Norikazu Konishi, Kota Tanaka, Shinichiro Matsuzono, Takayuki Suzuki, Michael Japs, Mark Burk, Warren Clark
  • Patent number: 10487343
    Abstract: The invention provides non-naturally occurring microbial organisms having a butadiene pathway. The invention additionally provides methods of using such organisms to produce butadiene.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: November 26, 2019
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Anthony P. Burgard, Jun Sun, Robin E. Osterhout, Priti Pharkya
  • Patent number: 10487342
    Abstract: The invention provides non-naturally occurring microbial organisms containing butadiene or 2,4-pentadienoate pathways comprising at least one exogenous nucleic acid encoding a butadiene or 2,4-pentadienoate pathway enzyme expressed in a sufficient amount to produce butadiene or 2,4-pentadienoate. The organism can further contain a hydrogen synthesis pathway. The invention additionally provides methods of using such microbial organisms to produce butadiene or 2,4-pentadienoate by culturing a non-naturally occurring microbial organism containing butadiene or 2,4-pentadienoate pathways as described herein under conditions and for a sufficient period of time to produce butadiene or 2,4-pentadienoate. Hydrogen can be produced together with the production of butadiene or 2,4-pentadienoate.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: November 26, 2019
    Assignee: Genomatica, Inc.
    Inventors: Priti Pharkya, Anthony P. Burgard, Mark J. Burk
  • Patent number: 10450404
    Abstract: At the time of producing a polyester by using a dicarboxylic acid component and a biomass-resource-derived diol as raw materials, a polyester is efficiently produced with good color tone, as the raw material diol derived from biomass resources, a diol in which the content of a cyclic carbonyl compound having a carbon atom number of 5 or 6 is from 0.01 to 12 ppm by mass, is used, and by controlling the content of a cyclic carbonyl compound having a carbon atom number of 5 or 6 in the raw material diol to fall in a prescribed range, the color tone of the polyester is improved.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: October 22, 2019
    Assignees: MITSUBISHI CHEMICAL CORPORATION, Genomatica, Inc.
    Inventors: Masaru Utsunomiya, Yusuke Izawa, Norikazu Konishi, Kota Tanaka, Shinichiro Matsuzono, Takayuki Suzuki, Michael Japs, Mark Burk, Warren Clark
  • Patent number: 10435723
    Abstract: The present invention relates to a method for preparing an adipate ester or thioester. The invention further relates to a method for preparing adipic acid from said ester or thioester. Further the invention provides a number of methods for preparing an intermediate for said ester or thioester. Further the invention relates to a method for preparing 6-amino caproic acid (6-ACA), a method for preparing 5-formyl valeric acid (5-FVA), and a method for preparing caprolactam. Further, the invention relates to a host cell for use in a method according to the invention.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: October 8, 2019
    Assignee: Genomatica, Inc.
    Inventors: Liang Wu, Axel Christoph Trefzer, Stefaan Marie Andre De Wildeman, Marco Alexander Van Den Berg
  • Patent number: 10415042
    Abstract: The invention provides a non-naturally occurring microbial organism having an adipate, 6-aminocaproic acid or caprolactam pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective adipate, 6-aminocaproic acid or caprolactam pathway. The invention additionally provides a method for producing adipate, 6-aminocaproic acid or caprolactam. The method can include culturing an adipate, 6-aminocaproic acid or caprolactam producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding an adipate, 6-aminocaproic acid or caprolactam pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce adipate, 6-aminocaproic acid or caprolactam.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: September 17, 2019
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Priti Pharkya, Robin E. Osterhout
  • Patent number: 10415063
    Abstract: The invention provides a non-naturally occurring microbial organism having a muconate pathway having at least one exogenous nucleic acid encoding a muconate pathway enzyme expressed in a sufficient amount to produce muconate.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: September 17, 2019
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Robin E. Osterhout, Jun Sun
  • Patent number: 10385344
    Abstract: The invention provides non-naturally occurring microbial organisms having a (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate pathway, p-toluate pathway, and/or terephthalate pathway. The invention additionally provides methods of using such organisms to produce (2-hydroxy-3-methyl-4-oxobutoxy)phosphonate pathway, p-toluate pathway or terephthalate pathway.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: August 20, 2019
    Assignee: Genomatica, Inc.
    Inventor: Robin E. Osterhout
  • Patent number: 10351887
    Abstract: The invention provides non-naturally occurring microbial organisms containing caprolactone pathways having at least one exogenous nucleic acid encoding a butadiene pathway enzyme expressed in a sufficient amount to produce caprolactone. The invention additionally provides methods of using such microbial organisms to produce caprolactone by culturing a non-naturally occurring microbial organism containing caprolactone pathways as described herein under conditions and for a sufficient period of time to produce caprolactone.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: July 16, 2019
    Assignee: Genomatica, Inc.
    Inventors: Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya, Mark J. Burk
  • Patent number: 10273508
    Abstract: The invention provides non-naturally occurring microbial organisms comprising a 1,4-butanediol (BDO) pathway comprising at least one exogenous nucleic acid encoding a BDO pathway enzyme expressed in a sufficient amount to produce BDO and further optimized for expression of BDO. The invention additionally provides methods of using such microbial organisms to produce BDO.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: April 30, 2019
    Assignee: Genomatica, Inc.
    Inventors: Stephen J. Van Dien, Anthony P. Burgard, Robert Haselbeck, Catherine J. Pujol-Baxley, Wei Niu, John D. Trawick, Harry Yim, Mark J. Burk, Robin E. Osterhout, Jun Sun
  • Patent number: 10227616
    Abstract: Process for the synthesis of 1,4-butanediol comprising fermentation of a culture medium by a microorganism provided with at least one metabolic pathway for the synthesis of 1,4-butanediol and able to use saccharose, in which said culture medium comprises a glucose and saccharose mixture comprising, based on the combined weight of glucose and saccharose, 10-90% by weight of saccharose and 10-90% by weight of glucose.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: March 12, 2019
    Assignees: Novamont S.P.A., Genomatica, Inc.
    Inventors: Maria Dani, Giuseppe Ruggiero, Davide Perini, Alice Bianchi
  • Patent number: 10208320
    Abstract: The invention provides a non-naturally occurring microbial organism having a microbial organism having at least one exogenous gene insertion and/or one or more gene disruptions that confer production of primary alcohols. A method for producing long chain alcohols includes culturing these non-naturally occurring microbial organisms.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: February 19, 2019
    Assignee: Genomatica, Inc.
    Inventors: Jun Sun, Anthony P. Burgard, Priti Pharkya
  • Patent number: 10167477
    Abstract: A non-naturally occurring microbial organism having an aniline pathway includes at least one exogenous nucleic acid encoding an aniline pathway enzyme expressed in a sufficient amount to produce aniline. The aniline pathway includes (1) an aminodeoxychorismate synthase, an aminodeoxychorismate lyase, and a 4-aminobenzoate carboxylyase or (2) an anthranilate synthase and an anthranilate decarboxylase. A method for producing aniline, includes culturing these non-naturally occurring microbial organisms under conditions and for a sufficient period of time to produce aniline.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: January 1, 2019
    Assignee: GENOMATICA, INC.
    Inventor: Priti Pharkya
  • Patent number: 10150977
    Abstract: The invention provides a non-naturally occurring microbial organism having a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The microbial organism contains at least one exogenous nucleic acid encoding an enzyme in the respective 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway. The invention additionally provides a method for producing 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid. The method can include culturing a 6-aminocaproic acid, caprolactam or hexametheylenediamine producing microbial organism, where the microbial organism expresses at least one exogenous nucleic acid encoding a 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid pathway enzyme in a sufficient amount to produce the respective product, under conditions and for a sufficient period of time to produce 6-aminocaproic acid, caprolactam, hexametheylenediamine or levulinic acid.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: December 11, 2018
    Assignee: Genomatica, Inc.
    Inventors: Mark J. Burk, Anthony P. Burgard, Robin E. Osterhout, Priti Pharkya