Patents Assigned to Kansas State University Research Foundation
  • Patent number: 9267964
    Abstract: Nanowire apparatus and methods of using the same are disclosed. The apparatus include nanowires that are attached to and extend from varying substrates and can be used in the manipulation of cells and/or sensing of cellular and subcellular characteristics. The methods include using the apparatus to sense forces exerted by a single cell or using the apparatus to manipulate one or more cells.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: February 23, 2016
    Assignee: Kansas State University Research Foundation
    Inventors: Bret Flanders, Govind Paneru
  • Patent number: 9216154
    Abstract: Supramolecular assemblies for delivering active agents to cancerous or precancerous tissues in a subject are provided. These supramolecular assemblies are also useful in assays for detecting and imaging of cancerous and precancerous cells. The assemblies are protease-sensitive and comprise a peptide linkage containing a protease consensus sequence. The assemblies can be selectively targeted to cancerous tissue where the protease enzymes degrade the peptide linkage thereby releasing the active agents which were physically or mechanically contained in or retained by the supramolecular assembly.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 22, 2015
    Assignee: Kansas State University Research Foundation
    Inventors: Stefan H. Bossmann, Deryl L. Troyer, Matthew T. Basel, Tej B. Shrestha, Hongwang Wang
  • Patent number: 9106055
    Abstract: Apparatus, systems, and methods using an optically pumped gas filled hollow fiber laser can be implemented in a variety of applications. In various embodiments, operation of an optically pumped gas filled hollow fiber laser is based on population inversion in the gas. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: August 11, 2015
    Assignees: STC.UNM, Kansas State University Research Foundation
    Inventors: Wolfgang G. Rudolph, Amarin Ratanavis, Vasudevan Nampoothiri, Kristan L. Corwin, Andrew M. Jones, Brian R. Washburn, Rajesh Kadel, John M. Zavada
  • Patent number: 9081100
    Abstract: A neutron detection system may include a neutron detector including a plurality of neutron detection devices, a plurality of discrete neutron moderating elements, wherein each of the neutron moderating elements is disposed between two or more neutron detection devices, the plurality of neutron detection devices and the plurality of discrete neutron moderating elements disposed along a common axis, a control system configured to generate a detector response library, wherein the detector response library includes one or more sets of data indicative of a response of the detector to a known neutron source, receive one or more measured neutron response signals from each of the neutron devices, the one or more measured response signals response to a detected neutron event, and determine one or more characteristics of neutrons emanating from a measured neutron source by comparing the one or more measured neutron response signals to the detector response library.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: July 14, 2015
    Assignees: The Curator of the University of Missouri, Kansas State University Research Foundation
    Inventors: Steven L. Bellinger, Anthony N. Caruso, Brian Cooper, William L. Dunn, Ryan G. Fronk, Douglas S. McGregor, William H. Miller, Eliot R. Myers, Thomas M. Oakes, Philip B. Ugorowski, John K. Shultis, Timothy J. Sobering, Cory B. Hoshor
  • Patent number: 9029228
    Abstract: The invention generally related to a method for preparing a layer of graphene directly on the surface of a substrate, such as a semiconductor substrate. The layer of graphene may be formed in direct contact with the surface of the substrate, or an intervening layer of a material may be formed between the substrate surface and the graphene layer.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: May 12, 2015
    Assignees: SunEdision Semiconductor Limited (UEN201334164H), Kansas State University Research Foundation
    Inventors: Michael R. Seacrist, Vikas Berry, Phong Tuan Nguyen
  • Patent number: 8993017
    Abstract: The present invention relates to animal food products and methods of producing thereof. The methods of the present invention comprise mixing a binding agent with feed meal at a temperature of between about 10° C. and about 70° C. to produce a mash, passing the mash through an extruder to form an animal feed product, and drying the animal feed product. In certain embodiments, the temperature of the meal, mash and final product is kept at 70° C. or below.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 31, 2015
    Assignees: Hill's Pet Nutrition, Inc., Kansas State University Research Foundation
    Inventors: Xiuzhi Susan Sun, Jihong Li, Pavinee Chinachoti, Luis J. Montelongo
  • Patent number: 8980951
    Abstract: Bicyclic sesquiterpene compounds exhibiting antifungal characteristics are formulated into antifungal compositions for use in the treatment of fungal infections in humans, animals, and plants. Particularly, sesquiterpene alcohols derived from drimane have been discovered to possess broad-spectrum antifungal characteristics. Exemplary antifungal sesquiterpene compounds include albicanol and drimenol, which have been shown effective against a number of pathogenic fungi.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: March 17, 2015
    Assignee: Kansas State University Research Foundation
    Inventors: Govindsamy Vediyappan, Duy H. Hua
  • Patent number: 8969027
    Abstract: The present invention provides a diagnostic reagent or assay for assessing the activity of a protease in vivo or in vitro and methods of detecting the presence of a cancerous or precancerous cell. The assays are comprised of two particles linked via an oligopeptide linkage that comprises a consensus sequence specific for the target protease. Cleavage of the sequence by the target protease can be detected visually or using various sensors, and the diagnostic results can be correlated with cancer prognosis.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: March 3, 2015
    Assignee: Kansas State University Research Foundation
    Inventors: Stefan H. Bossmann, Deryl L. Troyer, Matthew T. Basel
  • Publication number: 20150040272
    Abstract: The present disclosure describes genetically-modified plants having enhanced tolerance to multiple abiotic stressors, such as extreme temperatures (heat or cold) and/or drought. Abiotic stress tolerance is enhanced by ectopic expression of a heterologous glutaredoxin. Abiotic stress tolerance (particularly drought) is also enhanced by inhibited function, activity, or expression of an endogenous glutaredoxin. Methods of producing such genetically-modified plants are also disclosed.
    Type: Application
    Filed: August 31, 2012
    Publication date: February 5, 2015
    Applicants: BAYLOR COLLEGE OF MEDICINE, KANSAS STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Sunghun Park, Frank White, Jungeun Park, Kendal Hirschi, Ning-Hui Cheng
  • Publication number: 20150031571
    Abstract: Gold nanoparticles having luminol covalently linked thereto and optionally functionalized with an oligonucleotide and bacterial or viral detection assays. In one aspect, the detection system for detecting an analyte in a sample comprises a light-shielding container having a fiberoptic cable for transmitting light generated within the light-shielding container to a photodetector; a plurality of functionalized nanoparticles deposited in solid form on or within a support, such that the support is located within the light-shielding container; wherein the functionalized nanoparticles comprise nanoparticles covalently attached to one or more chemiluminescent moieties; and a reagent system which causes the chemiluminescent moieties to produce light in the presence of the reagent system and the analyte in the sample.
    Type: Application
    Filed: February 7, 2013
    Publication date: January 29, 2015
    Applicants: UNIVERSITY OF KANSAS, KANSAS STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Judy Wu, Mark Richter, Lateef U. Syed, Jun Li, Scott Hefty
  • Patent number: 8917384
    Abstract: A portable optical sensor for measuring surface strain in an object, such as pre-stressed concrete articles, is provided. The sensor is a modular device comprising at least first and second modules, each of which includes a laser and image sensor. When placed adjacent to the object, the laser of each module illuminates respective, spaced-apart areas of the object's surface and each module's image sensor captures at least a portion of the light reflected from the illuminated area and generates a speckle image of the area. Speckle images of the areas taken at various times and/or under various object stress conditions are compared to arrive at a surface strain measurement for the object.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: December 23, 2014
    Assignee: Kansas State University Research Foundation
    Inventors: Weixin Zhao, Burdette Terry Beck, Robert Peterman, Chih-Hang Wu
  • Patent number: 8895502
    Abstract: Therapeutic peptides (and peptoids) for preventing or inhibiting tissue damage associated with ischemia and/or reperfusion are provided, along with peptides (and peptoids) for preventing or inhibiting cancerous tissue growth. The peptides are derived from ?2-glycoprotein I. Pharmaceutical and veterinary compositions comprising the peptides are also provided. Methods of using the peptides to prevent or inhibit tissue damage associated with ischemia and/or reperfusion and/or to prevent or inhibit tissue damage or the growth of cancerous tissue are also provided.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 25, 2014
    Assignee: Kansas State University Research Foundation
    Inventors: Sherry Fleming, John M. Tomich
  • Patent number: 8888910
    Abstract: Disclosed are encapsulated zinc compounds, together with methods for preparing and use the same. Also disclosed are methods for mixing the encapsulated zinc mixtures with a cement, and the resulting concrete compositions.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 18, 2014
    Assignees: Board of Regents of the University of Texas System, Kansas State University Research Foundation
    Inventors: Maria C. G. Juenger, Sarah Clare Taylor Lange, Kyle Riding
  • Publication number: 20140335010
    Abstract: A method of producing pristine graphene particles through a one-step, gas-phase, catalyst-free detonation of a mixture of one or more carbon-containing compounds hydrocarbon compounds and one or more oxidizing agents is provided. The detonation reaction occurs very quickly and at relatively high temperature, greater than 3000 K, to generate graphene nanosheets that can be recovered from the reaction vessel, such as in the form of an aerosol. The graphene nanosheets may be stacked in single, double, or triple layers, for example, and may have an average particle size of between about 35 to about 250 nm.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: Kansas State University Research Foundation
    Inventors: Christopher Sorensen, Arjun Nepal, Gajendra Prasad Singh
  • Patent number: 8883967
    Abstract: The present invention provides branched amphipathic peptides and vesicles formed thereof. The peptides comprise a polar/positively charged C-terminal segment, a branch point, and two hydrophobic N-terminal segments extending from the branch point. The vesicles are formed using a plurality of first and second peptides, wherein the first peptide has a different chain length from the second peptide. When a plurality of the first and second peptides are mixed together, they self-assemble to form small spheres defined by a membrane consisting of an interlocking peptide network bilayer and having a liquid-receiving interior space (i.e., hollow core). In the bi-layer, the respective hydrophobic segments of the peptides form beta-sheet structures having a hydrogen bond-stabilized, anti-parallel orientation in which the opposed sequences interlock to form a zipper-like structure in three dimensions. Thus, the peptide assembly (i.e.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: November 11, 2014
    Assignee: Kansas State University Research Foundation
    Inventors: John M. Tomich, Takeo Iwamoto, Yasuaki Hiromasa, Sushanth Gudlur
  • Patent number: 8877951
    Abstract: Superparmagnetic acid-functionalized nanoparticle catalysts are provided along with methods of using the same to protonate an oxygen atom of a carbon-oxygen bond. Particularly, the catalysts comprise a nanoparticle having a ferromagnetic core surrounded by a metal oxide shell. The nanoparticle is at least partially coated with an acid-functionalized siloxane compound. The acid-functionalized nanoparticles may be used to catalyze any number of reactions that can be catalyzed in the presence of protons. The ferromagnetic core permits the nanoparticle catalyst material to be separated from the reaction medium through application of a magnetic field and reused.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: November 4, 2014
    Assignee: Kansas State University Research Foundation
    Inventors: Hongwang Wang, Stefan Bossmann, Byungjun Kollbe Ahn, Xiuzhi Susan Sun
  • Publication number: 20140294882
    Abstract: The present invention relates to protecting against, treating, and detecting Fusobacteria infections. Compositions and methods derived from nucleic acid and protein sequences of a 40 kDa Adhesin protein are provided to protect against, treat, and detect Fusobacteria infections in a subject. In one aspect, vaccines capable of inducing an immune response to a 40 kDa Adhesin protein are used to protect against Fusobacteria infection. Also, nucleic acid molecules, proteins, immunogens, antibodies, and antisense molecules derived from the sequences of the 40 kDa Adhesin protein may be used to protect against, treat, and detect Fusobacteria infections in a subject.
    Type: Application
    Filed: March 26, 2012
    Publication date: October 2, 2014
    Applicant: KANSAS STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Sanjeev Narayanan, Amit Kumar, Tiruvoor Nagaraja, Muckatira Chengappa
  • Patent number: 8841272
    Abstract: Nanoparticles for insect RNAi via oral delivery are provided, along with methods of silencing a target gene in a target insect using RNAi are provided. The nanoparticles comprise a polymer matrix and insect dsRNA. The dsRNA comprises at least one sequence having a region of complementarity substantially complementary to at least a portion of an mRNA transcript of the target gene. Insect baits comprising the nanoparticles are also provided. Methods of screening target gene functions are also provided using the methods disclosed herein.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: September 23, 2014
    Assignee: Kansas State University Research Foundation
    Inventors: Kun Yan Zhu, Xin Zhang, Jianzhen Zhang
  • Publication number: 20140275583
    Abstract: Superparmagnetic acid-functionalized nanoparticle catalysts are provided along with methods of using the same to protonate an oxygen atom of a carbon-oxygen bond. Particularly, the catalysts comprise a nanoparticle having a ferromagentic core surrounded by a metal oxide shell. The nanoparticle is at least partially coated with an acid-functionalized siloxane compound. The acid-functionalized nanoparticles may be used to catalyze any number of reactions that can be catalyzed in the presence of protons. The ferromagnetic core permits the nanoparticle catalyst material to be separated from the reaction medium through application of a magnetic field and reused.
    Type: Application
    Filed: October 24, 2012
    Publication date: September 18, 2014
    Applicant: Kansas State University Research Foundation
    Inventors: Hongwang Wang, Stefan Bossmann, Byungjun Kollbe Ahn, Xiuzhi Susan Sun
  • Patent number: 8835395
    Abstract: The present invention broadly provides novel peptides that can be used to form hydrogels. The peptides are short (preferably 30 amino acid residues or less) and include hydrophilic and hydrophobic segments joined by a turning segment. The hydrogels are formed by altering the pH of a solution of these peptides to an acidic level, or by introducing a source of ions into a solution of these peptides. The resulting hydrogels are shear thinning gels that have high storage moduli and high rates of recovery after destruction. They find use in medical applications, including tissue engineering.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: September 16, 2014
    Assignee: Kansas State University Research Foundation
    Inventors: Xiuzhi Susan Sun, Hongzhou Huang