Patents Assigned to LightLab Imaging, Inc.
  • Publication number: 20220335616
    Abstract: The present disclosure provides systems and methods to receiving OCT or IVUS image data frames to output one or more representations of a blood vessel segment. The image data frames may be stretched and/or aligned using various windows or bins or alignment features. Arterial features, such as the calcium burden, may be detected in each of the image data frames. The arterial features may be scored. The score may be a stent under-expansion risk. The representation may include an indication of the arterial features and their respective score. The indication may be a color coded indication.
    Type: Application
    Filed: July 6, 2022
    Publication date: October 20, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Gregory Patrick Amis, Ajay Gopinath, Mark Hoeveler
  • Patent number: 11475560
    Abstract: In part, the disclosure relates to an automated method of branch detection with regard to a blood vessel imaged using an intravascular modality such as OCT, IVUS, or other imaging modalities. In one embodiment, a representation of A-lines and frames generated using an intravascular imaging system is used to identify candidate branches of a blood vessel. One or more operators such as filters can be applied to remove false positives associated with other detections.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: October 18, 2022
    Assignee: LightLab Imaging, Inc.
    Inventor: Ajay Gopinath
  • Patent number: 11461902
    Abstract: In part, the disclosure relates to method for identifying regions of interest in a blood vessel. The method includes the steps of: providing OCT image data of the blood vessel; applying a plurality of different edge detection filters to the OCT image data to generate a filter response for each edge detection filter; identifying in each edge detection filter response any response maxima; combining the response maxima for each edge detection filter response while maintaining the spatial relationship of the response maxima, to thereby create edge filtered OCT data; and analyzing the edge filtered OCT data to identify a region of interest, the region of interest defined as a local cluster of response maxima. In one embodiment, one or more indicia are positioned in one or more panels to emphasize a reference vessel profile as part of a user interface.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: October 4, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Ajay Gopinath, Desmond Adler
  • Publication number: 20220280261
    Abstract: In one embodiment, the disclosure relates to a probe that a cylindrical marker band defining an inner surface, an outer surface, a first end and a second end and having a band length, the inner surface defining a marker band bore, the cylindrical marker band includes a radiopaque material; a molded unitary lens defining an elongate optical fiber receiving section having a fiber section length and a beam directing surface, wherein the fiber section length and the band length overlap along an overlap distance; and an optical fiber, wherein a first section of the optical fiber is disposed in the optical fiber receiving section, wherein a portion of the first section of the optical fiber is disposed within the marker band bore.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: James Booker, David Ellman, Douglas Tatosian, Charles Milne
  • Publication number: 20220280259
    Abstract: Aspects of the disclosure relate to the identification of when a blood vessel has been sufficiently cleared of blood so as to capture intravascular images of the vessel wall. The disclosed systems and methods allow for the identification of an initial and a final blood clearing based on the identification of edges within scanlines of a plurality of image frames. The edges of a plurality of scanlines may be analyzed to determine an average edge offset for each image frame, and the average edge offsets for a plurality of image frames may be averaged over various time-windows, so as to determine when the initial and final blood clearing events have occurred. Once a final blood clearing event has been identified, the disclosed system may automatically initiate a catheter pullback procedure, so as to capture intravascular images over a length of the vessel that has been sufficiently cleared of blood.
    Type: Application
    Filed: March 2, 2022
    Publication date: September 8, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Christopher E. Griffin, Joel M. Friedman, Ashley Netravali, Lingfa Yang
  • Patent number: 11436731
    Abstract: The present disclosure provides systems and methods to receiving OCT or IVUS image data frames to output one or more representations of a blood vessel segment. The image data frames may be stretched and/or aligned using various windows or bins or alignment features. Arterial features, such as the calcium burden, may be detected in each of the image data frames. The arterial features may be scored. The score may be a stent under-expansion risk. The representation may include an indication of the arterial features and their respective score. The indication may be a color coded indication.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: September 6, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Gregory Patrick Amis, Ajay Gopinath, Mark Hoeveler
  • Patent number: 11435233
    Abstract: In part, the invention relates to systems and methods of calibrating a plurality of frames generated with respect to a blood vessel as a result of a pullback of an intravascular imaging probe being pullback through the vessel. A calibration feature disposed in the frames that changes between a subset of the frames can be used to perform calibration. Calibration can be performed post-pullback. Various filters and image processing techniques can be used to identify one or more feature in the frames including, without limitation, a calibration feature, a guidewire, a side branch, a stent strut, a lumen of the blood vessel, and other features. The feature can be displayed using a graphic user interface.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: September 6, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Joel M. Friedman, Amr Elbasiony
  • Publication number: 20220260360
    Abstract: Aspects of the disclosure relate to systems, methods, and algorithms to perform wavenumber linearization and dispersion correction in optical systems without the need for hardware modifications, empirical adjustments, precise mirror alignment, and which can be conducted at low computational costs and in real-time. A one-time calibration process can generate spectra or calibration criteria, including wavenumber-linearization criteria, dispersion correction, and spectral flattening spectra, which can be used to correct an optical coherence tomogram in real time.
    Type: Application
    Filed: February 8, 2022
    Publication date: August 18, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Chih-Hao Liu, Steven M. Stromski
  • Publication number: 20220244841
    Abstract: In part, the disclosure relates to intravascular data collection systems and the software-based visualization and display of intravascular data relating to detected side branches and side branch obstruction. An estimate of side branch diameter can be made based on a vessel profile or a maximum diameter of a vessel at a distal and proximal location relative to the side branch. A amount of side branch obstruction may be determined by comparing an observed side branch diameter with in the image data with the estimated side branch diameter. In addition, an amount of blood flow obstruction may also be determined.
    Type: Application
    Filed: February 17, 2022
    Publication date: August 4, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Ajay Gopinath, Denis Dion, Christopher E. Griffin, Desmond Adler
  • Patent number: 11367186
    Abstract: The disclosure relates to stent detection and shadow detection in the context of intravascular data sets obtained using a probe such as, for example, and optical coherence tomography probe or an intravascular ultrasound probe.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: June 21, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Sonal Ambwani, Christopher E. Griffin
  • Patent number: 11344373
    Abstract: In part, the disclosure relates to systems and methods to assess stent/scaffold expansion in a vessel on an expedited time scale after stent/scaffold placement and expansion. In one embodiment, the method generates a first representation of a stented segment of the blood vessel indicative of a level of stent expansion; determines using the detected stent struts, a first end of the stent and a second end of the stent; and generate a second representation of the segment of the blood vessel by interpolating a lumen profile using an offset distance from the first end and the second end.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: May 31, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Ajay Gopinath, Kyle Savidge, Robert Steinbrecher
  • Patent number: 11311200
    Abstract: In part, the disclosure relates to computer-based methods, and systems suitable for evaluating a subject to determine the appropriate diagnostic tools for assessing coronary arteries. This can include assessing various blood pressure values during a resting state (without inducing hyperemia). These systems and methods can assess a patient and identify coronary dominance on per patient basis. In turn, this assessment can be used to recommend whether a resting index is appropriate or if another index such as FFR or others such be obtained diagnostic metric such as a pressure value-based ratio.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: April 26, 2022
    Assignee: LIGHTLAB IMAGING, INC.
    Inventors: Ajay Gopinath, Samir Farah, Johan Svanerudh
  • Publication number: 20220117551
    Abstract: In part, the disclosure relates to computer-based methods, devices, and systems suitable for pre-stent planning, stent planning and post-stent planning using one or more computing devices. In one embodiment, a method generates one or more stent profiles, such as a target stent profile, that are user configurable during a pre-stent planning stage by selecting one or more frames. The method performs a comparative analysis of the previously set target stent profile relative to a vessel lumen region post stent deployment. The method and related user interfaces can alert a user to move, remove, reposition, or inflate a stent. The location of jailed side branches can also be identified and displayed based upon the comparative analysis. Parameters that change based on the outcome of the stent deployment can be displayed in terms of the predicted parameter value and the value that is measured or determined after stent deployment.
    Type: Application
    Filed: November 5, 2021
    Publication date: April 21, 2022
    Applicant: LightLab Imaging, Inc.
    Inventor: Ajay Gopinath
  • Publication number: 20220114388
    Abstract: In part, the disclosure relates to methods, and systems suitable for evaluating image data from a patient on a real time or substantially real time basis using machine learning (ML) methods and systems. Systems and methods for improving diagnostic tools for end users such as cardiologists and imaging specialists using machine learning techniques applied to specific problems associated with intravascular images that have polar representations. Further, given the use of rotating probes to obtain image data for OCT, IVUS, and other imaging data, dealing with the two coordinate systems associated therewith creates challenges. The present disclosure addresses these and numerous other challenges relating to solving the problem of quickly imaging and diagnosis a patient such that stenting and other procedures may be applied during a single session in the cath lab.
    Type: Application
    Filed: December 23, 2021
    Publication date: April 14, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Shimin Li, Ajay Gopinath, Kyle Savidge
  • Publication number: 20220095933
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 31, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20220095934
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 22, 2021
    Publication date: March 31, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Publication number: 20220095932
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 31, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Patent number: 11287961
    Abstract: In part, the disclosure relates to intravascular data collection systems and the software-based visualization and display of intravascular data relating to detected side branches and detected stent struts. Levels of stent malapposition can be defined using a user interface such as a slider, toggle, button, field, or other interface to specify how indicia are displayed relative to detected stent struts. In addition, the disclosure relates to methods to automatically provide a two or three-dimensional visualization suitable for assessing side branch and/or guide wire location during stenting. The method can use one or more a computed side branch location, a branch takeoff angle, one or more stent strut locations, and one or more lumen contours.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 29, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Ajay Gopinath, Denis Dion, Christopher E. Griffin, Desmond Adler
  • Publication number: 20220087544
    Abstract: A method and apparatus of automatically locating in an image of a blood vessel the lumen boundary at a position in the vessel and from that measuring the diameter of the vessel. From the diameter of the vessel and estimated blood flow rate, a number of clinically significant physiological parameters are then determined and various user displays of interest generated. One use of these images and parameters is to aid the clinician in the placement of a stent. The system, in one embodiment, uses these measurements to allow the clinician to simulate the placement of a stent and to determine the effect of the placement. In addition, from these patient parameters various patient treatments are then performed.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 24, 2022
    Applicant: LightLab Imaging, Inc.
    Inventors: Joseph M. Schmitt, Joel M. Friedman, Christopher Petroff, Amr Elbasiony
  • Patent number: 11250294
    Abstract: In part, the disclosure relates to methods, and systems suitable for evaluating image data from a patient on a real time or substantially real time basis using machine learning (ML) methods and systems. Systems and methods for improving diagnostic tools for end users such as cardiologists and imaging specialists using machine learning techniques applied to specific problems associated with intravascular images that have polar representations. Further, given the use of rotating probes to obtain image data for OCT, IVUS, and other imaging data, dealing with the two coordinate systems associated therewith creates challenges. The present disclosure addresses these and numerous other challenges relating to solving the problem of quickly imaging and diagnosis a patient such that stenting and other procedures may be applied during a single session in the cath lab.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: February 15, 2022
    Assignee: LightLab Imaging, Inc.
    Inventors: Shimin Li, Ajay Gopinath, Kyle Savidge