Patents Assigned to Rutgers, The State University
  • Patent number: 11702462
    Abstract: The present disclosure provides for non-viral compositions and methods for delivering nucleic acids into eukaryotic cells (e.g., stem cells) with high efficiency and low genotoxicity.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: July 18, 2023
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Arash Hatefi, Xuguang Chen, Alireza Nomani
  • Patent number: 11697008
    Abstract: A microneedle assembly and a method of fabrication the assembly are provided. The microneedle assembly includes an array of microneedles attached to a base. Each of the microneedles comprise a tip, a needle shaft and a plurality of cantilevered barbs protruding outwardly from the needle shaft, where a plurality of the microneedles include two or more of the cantilevered barbs arranged in a series of concentric rings along the needle shaft of each of the plurality of microneedles. The microneedle assembly may be fabricated using a 3D printing technique, where one or more cantilevered layers are formed by exposing a photocurable liquid resin including monomer material to a light source to create initially horizontal, cantilevered barbs having a crosslinking gradient, and rinsing to remove an amount of un-crosslinked monomers from the cantilevered layers to induce curvature in the cantilevered barbs extending towards a direction of the lower crosslinking.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: July 11, 2023
    Assignees: Rutgers, The State University of New Jersey
    Inventors: Howon Lee, Giuseppe Barillaro, Riddish Morde, Emanuele Vignali
  • Publication number: 20230210073
    Abstract: The disclosure provides methods of making gene-edited plants that are resistant to downy mildew, such as plants with reduced expression of homoserine kinase (HSK), 2-oxoglutarate-Fe(II) oxygenase (2OGO), or both. The disclosure further provides methods of making gene-edited modified plants that are cold tolerant, such as plants with reduced expression of MYB14. In some examples, CRISPR/Cas methods are used, wherein the plants include a mutated HSK, 2OGO, and/or MYB14 gene resulting in reduced expression and/or gene activity. Plants generated using the methods are provided. Such plants can include other desirable traits. HSK, 2OGO, and/or MYB14 nucleic acid and protein molecules are provided, as are gRNAs specific for HSK, 2OGO, or MYB14 and vectors containing such.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 6, 2023
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Rong Di, Michael A. Lawton, James E. Simon
  • Publication number: 20230212232
    Abstract: The invention describes a method of generating antibodies to a mixture of SARS-CoV-2 peptidogenic proteins or polynucleotides encoding SARS-CoV-2 peptidogenic proteins wherein the SARS-CoV-2 peptidogenic protein has altered conformational dynamics as compared to a SARS-CoV-2 starting protein and wherein the SARS-CoV-2 peptidogenic protein has a similar conformation to the SARS-CoV-2 starting protein. The SARS-CoV-2 peptidogenic proteins can be used to induce an immune response, which can lead to the generation of antibodies and/or can be used to vaccinate a mammal.
    Type: Application
    Filed: March 2, 2023
    Publication date: July 6, 2023
    Applicant: Rutgers, the State University of New Jersey
    Inventors: Stephen Anderson, Elliot Campbell
  • Publication number: 20230210783
    Abstract: Nanosphere composition containing a mixture of a triblock oligomer and a diblock oligomer for the delivery of an active agent. Also disclosed are methods of preparing the nanospheres and methods of delivering an active agent enclosed in the nanospheres.
    Type: Application
    Filed: June 11, 2021
    Publication date: July 6, 2023
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Joachim B. Kohn, Mariana Reis Nogueira de Lima
  • Publication number: 20230203512
    Abstract: Compositions and methods for agrobacterium-mediated chloroplast transgene expression are provided.
    Type: Application
    Filed: July 20, 2022
    Publication date: June 29, 2023
    Applicant: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Pal Maliga, Aki Matsuoka
  • Patent number: 11685723
    Abstract: The invention provides compounds of formula Ia, Ib, Ic, or as well as compositions comprising a compound of formula Ia-Id, methods of making such compounds, and methods of using such compounds, e.g., as inhibitors of bacterial RNA polymerase and as antibacterial agents.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: June 27, 2023
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Richard H. Ebright, Yon W. Ebright
  • Patent number: 11684686
    Abstract: Disclosed herein are flexible plasma applicators based on fibrous layers that are capable of rapidly sanitizing a surface via either direct or indirect contact with said surface.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: June 27, 2023
    Assignees: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY, UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INCORPORATEDg
    Inventors: Aaron Mazzeo, Jingjin Xie, Qiang Chen, Subrata Roy
  • Patent number: 11685801
    Abstract: The invention provides UV-sensitive monomers, comprising a cyclopropenone-containing group, which acts as a masked dibenzocyclooctyne (DBCO)/dibenzoazocyclooctyne (DIBAC) group. The monomers of the invention can be polymerized for example via reversible addition fragmentation chain transfer (RAFT) polymerization techniques to yield a polymer comprising the masked DBCO/DIBAC group. In certain embodiments, the DBCO/DIBAC group can be unmasked under controlled conditions, allowing conjugation of small molecules and/or macromolecules to the polymer through highly selective and efficient strain-promoted azide alkyne click chemistry (SPAAC).
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: June 27, 2023
    Assignee: Rutgers, the State University of New Jersey
    Inventors: Adam Gormley, Shashank Kosuri
  • Publication number: 20230193481
    Abstract: Disclosed are cathodes comprising a conductive support substrate having an electrocatalyst coating containing nickel hosphide nanoparticles and a co-catalyst. The conductive support substrate is capable of incorporating a material to be reduced, such as CO2 or CO. A cocatalyst, either incorporated into the electrolyte solution, or into the conductive support, or adsorbed to, deposited on, or incorporated into the bulk cathode material, alters the electrocatalyst properties by increasing the carbon product selectivity through interactions with the reaction intermediates.
    Type: Application
    Filed: May 19, 2021
    Publication date: June 22, 2023
    Applicant: Rutgers, The State University of New Jersey
    Inventors: G. Charles Dismukes, Anders Bo Laursen, Karin Ute Doehl Calvinho
  • Patent number: 11675104
    Abstract: A system and method for detecting a suspicious object, including a wireless signal transmitter with first and second transmitter antennas, a first wireless signal receiver on an opposite side of the object from the transmitter having first and second receiver antennas, and a second wireless signal receiver on a same side of the object as the transmitter having a third receiver antenna. The transmitter may emit wireless signals from each of the transmitter antennas. The signals emitted by the first transmitter antenna may be received at the first and second receiver antennas. The signals emitted by both transmitter antennas may be received at the third receiver antenna. The object's material type may be determined based on channel state information of the wireless signals received at first receiver. A size of the object may be determined based on channel state information of the wireless signals received at the second receiver.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: June 13, 2023
    Assignees: Rutgers, The State University of New Jersey., The Trustees of Indiana University, The Research Foundation for The State University of New York
    Inventors: Yingying Chen, Chen Wang, Jian Liu, Hongbo Liu, Yan Wang
  • Publication number: 20230167036
    Abstract: Compositions and methods for enhancing plant growth and resistance to abiotic stressors are disclosed.
    Type: Application
    Filed: August 14, 2020
    Publication date: June 1, 2023
    Applicant: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Bingru Huang, Ning Zhang, William Errickson
  • Publication number: 20230167238
    Abstract: The present invention provides new classes of phenol compounds, including those derived from tyrosol and analogues, useful as monomers for preparation of biocompatible polymers, and biocompatible polymers prepared from these monomeric phenol compounds, including novel biodegradable and/or bioresorbable polymers. These biocompatible polymers or polymer compositions with enhanced bioresorbability and processibility are useful in a variety of medical applications, such as in medical devices and con-trolled-release therapeutic formulations. The invention also provides methods for preparing these monomeric phenol compounds and biocompatible polymers.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 1, 2023
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Joachim B. Kohn, Durgadas Bolikal, Julian Chesterman, Jarrod Cohen
  • Patent number: 11663916
    Abstract: Disclosed is a method and system that receives sensor information from each of a plurality of sensors. Each sensor in the plurality is associated with a vehicle. The sensor information includes location coordinates of each vehicle in the plurality. The sensor information associated with each vehicle in the plurality then is translated to parking statistics information. In one embodiment, the translation is based on an aggregate of sensor information corresponding to the plurality of vehicles. The system then communicates parking statistics information to the vehicle.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: May 30, 2023
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Marco Gruteser, Suhas Mathur
  • Publication number: 20230149403
    Abstract: The invention provides methods and compositions that are useful for treating allergic diseases, bacterial infections, fungal infections, viral infections, mastocytosis, mast cell-mediated inflammation and parasite infections (e.g., helminth infections).
    Type: Application
    Filed: June 30, 2022
    Publication date: May 18, 2023
    Applicant: Rutgers, the State University of New Jersey
    Inventor: Mark C. Siracusa
  • Patent number: 11649203
    Abstract: Disclosed are new classes of diphenol compounds, derived from tyrosol or tyrosol analogues, which are useful as monomers for preparation of biocompatible polymers. Also disclosed are biocompatible polymers prepared from these monomeric diphenol compounds, including novel biodegradable and/or bioresorbable polymers of formula These biocompatible polymers or polymer compositions with enhanced bioresorbabilty and processibility are useful in a variety of medical applications, such as in medical devices and controlled-release therapeutic compositions. The invention also provides methods for preparing these monomeric diphenol compounds and biocompatible polymers.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: May 16, 2023
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Durgadas Bolikal, Joachim B. Kohn
  • Patent number: 11645791
    Abstract: Systems and methods for joint reconstruction and segmentation of organs from magnetic resonance imaging (MRI) data are provided. Sparse MRI data is received at a computer system, which jointly processes the MRI data using a plurality of reconstruction and segmentation processes. The MRI data is processed using a joint reconstruction and segmentation process to identify an organ from the MRI data. Additionally, the MRI data is processed using a channel-wise attention network to perform static reconstruction of the organ from the MRI data. Further, the MRI data can is processed using a motion-guided network to perform dynamic reconstruction of the organ from the MRI data. The joint processing allows for rapid static and dynamic reconstruction and segmentation of organs from sparse MRI data, with particular advantage in clinical settings.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: May 9, 2023
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Qiaoying Huang, Dimitris Metaxas
  • Patent number: 11638569
    Abstract: Systems and methods for detecting placement of an object in a digital image are provided. The system receives a digital image and processes the digital image to generate one or more candidate regions within the digital image using a first neural network. The system then selects a proposed region from the one or more candidate regions using the first neural network and assigns a score to the proposed region using the first neural network. Lastly, the system processes the proposed region using a second neural network to detect an object in the proposed region.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: May 2, 2023
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Cosmas Mwikirize, John L. Nosher, Ilker Hacihaliloglu
  • Publication number: 20230121031
    Abstract: In one aspect, the present disclosure relates to a masked fluorogenic compound comprising a small molecule protecting group that can be cleaved following a reaction with a biomarker. In some embodiments, cleavage of the small molecule protecting group provides a fluorogenic ligand that binds to an aptamer, leading to fluorescence emission. In another aspect, the present disclosure relates to a method of detecting a disease or a disorder in a subject and/or in a biological sample from the subject.
    Type: Application
    Filed: August 30, 2022
    Publication date: April 20, 2023
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Enver Izgu, Tushar Aggarwal
  • Publication number: 20230123171
    Abstract: Methods of generating mature ssDNA LASSO probes using DNA recombinase mediated assembly are provided. Also provided are mature ssDNA LASSO probes made by the methods, methods of their use, and kits including such.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 20, 2023
    Applicant: Rutgers, The State University of New Jersey
    Inventors: Biju Parekkadan, Lorenzo Tosi