Patents Assigned to SiGe Semiconductor Inc.
  • Publication number: 20110128078
    Abstract: A system and method are provided for reducing dynamic EVM of an integrated circuit power amplifier (PA) used for RF communication. In a multistage PA, the largest amplification stage is biased with a high amplitude current pulse upon receipt of a Tx enable, before receipt of the RF signal data burst. The high amplitude current pulse causes a large portion of the total ICQ budget of the multistage PA to pass through the largest amplification stage causing the entire integrated circuit to rapidly approach steady-state operating conditions. A smoothing bias current is applied to the largest amplification stage after the pulse decays to compensate for transient bias current levels while standard bias circuitry is still approaching steady-state temperature.
    Type: Application
    Filed: December 2, 2009
    Publication date: June 2, 2011
    Applicant: SiGe Semiconductor Inc.
    Inventors: Mark Doherty, Lui (Ray) Lam, Chun-Wen Paul Huang
  • Publication number: 20110050347
    Abstract: A method is disclosed wherein a power level indicating a level of transmission power from an amplifier is provided. An indication of at least one of channel, channel bandwidth, OOB spectral requirements, spectral mask requirements, EVM, modulation rate, and modulation type is also provided. A control signal for controlling one of a bias current provided to the amplifier and a matching circuit for matching an output port of at least a stage of the amplifier is generated, the control signal determined in dependence upon the power level and the at least an indication. Then the one of the bias current and the matching circuit is adjusted in accordance with the control signal.
    Type: Application
    Filed: August 27, 2009
    Publication date: March 3, 2011
    Applicant: SiGe Semiconductor Inc.
    Inventors: Alan Trainor, Darcy Poulin, Craig Christmas
  • Publication number: 20100327948
    Abstract: A method for controlling a switch based on transistors is disclosed. A switching circuit for switching a signal from an input port to an output port thereof is provided. A shunting circuit for switchably shunting the signal from the input port to ground is also provided. A control signal is generated for biasing a control port of the shunting circuit and an approximately complimentary control signal is generated for biasing of the switching circuit to either shunt a signal received at the input port or to switch the signal to the output port. A further bias signal for biasing a port within the switching circuit along the signal path between the input port and the output port is also provided.
    Type: Application
    Filed: June 29, 2009
    Publication date: December 30, 2010
    Applicant: SiGe Semiconductor Inc.
    Inventors: John Nisbet, Michael McPartlin, Chun-Wen Paul Huang
  • Publication number: 20100231236
    Abstract: An integrated RF circuit is disclosed having an RF input port and an RF output port. The RF output port is for being coupled with a known impedance to an external circuit element such as an antenna. At least an RF circuit element is disposed along a propagation path between the RF input port and the RF output port. The RF circuit element has a first input port and a first output port and is for affecting a signal received at the first input port and providing the affected signal to the first output port. The integrated RF circuit also has a VSWR detector circuit for measuring a ratio of a characteristic of RF signals at the first input port and a same characteristic of the RF signals at the first output port and for providing an indication of the ratio at a VSWR output port. The measured ratio of the characteristic is affected by an impedance of the coupling thereby providing an indication relating to the coupling.
    Type: Application
    Filed: March 1, 2010
    Publication date: September 16, 2010
    Applicant: SiGe Semiconductor Inc.
    Inventor: Jose Harrison
  • Publication number: 20100232476
    Abstract: Embodiments of the invention involve providing assistance data to a global position and navigation receiver, for example topographical data, such that the receiver can decide on a specific action depending on that data. The topographical data may include one or both of geographical data and architectural data. Geographical data may include information about natural formations, such as hills, valleys, forests, etc. Architectural data may include manmade formations, such as streets, buildings, bridges, etc. The receiver may then interpret and decide on a course of action for controlling the receiver base on the assistance data.
    Type: Application
    Filed: August 31, 2007
    Publication date: September 16, 2010
    Applicant: SIGE SEMICONDUCTOR INC.
    Inventors: Ben Tarlow, Stuart Strickland
  • Publication number: 20100231445
    Abstract: Apparatus and methods are provided for use in a receiver that receives global positioning data from one or more satellites above the Earth's surface. The apparatus and methods involve detecting a change in at least one parameter associated with the receiver and determining if the change in the at least one parameter is to be treated as erroneous. As a result of determining if the change in the at least one parameter is to be treated as erroneous, a further action may be performed. Determining if the change is to be treated as erroneous may include, for example, detecting changes in more than one parameter and determining if the changes are coincident. Detecting a change in at least one parameter may also enable the receiver to predict the presence and magnitude of multipath components of signals, predict changes in an environment local to the receiver, predict large errors in position estimates determined by the receiver and modify an acquisition and tracking strategy used by the receiver.
    Type: Application
    Filed: August 31, 2007
    Publication date: September 16, 2010
    Applicant: SIGE SEMICONDUCTORS INC.
    Inventor: Ben Tarlow
  • Publication number: 20100202325
    Abstract: A circuit is disclosed with an external coupling port for coupling to an external antenna, for example. The circuit has an FDD receive path including a narrowband passband filter. The circuit has a TDD receive path bypassing the narrowband passband filter but relying on a same amplifier. The circuit also has an FDD transmit path including a narrowband passband filter. The circuit has a TDD transmit path bypassing the narrowband passband filter of the FDD transmit path but relying on a same transmit amplifier. A switching configuration allows the circuit to operate in TDD mode, alternating between the TDD receive path and the TDD transmit path and in the FDD mode wherein the FDD transmit and receive paths are simultaneously coupled to the external coupling port.
    Type: Application
    Filed: February 6, 2009
    Publication date: August 12, 2010
    Applicant: SiGe Semiconductor Inc.
    Inventors: Darcy POULIN, Peter Gammel
  • Patent number: 7754539
    Abstract: An electronic module that operates at various radio frequency standards is provided. The module includes a first integrated circuit die formed in a first semiconductor substrate and manufactured using a first semiconductor process. Disposed within the first integrated circuit is the first signal conditioning circuit for performing a function and the first and second ancillary circuits. The first ancillary circuit electrically coupled to the first signal conditioning circuit for use by the first signal conditioning circuit during operation thereof. The second ancillary circuit is for other than being used by the first signal conditioning circuit during operation thereof since the second integrated circuit die is electrically coupled to the second ancillary circuit and formed in the second semiconductor substrate and co-located with the first integrated circuit within the module.
    Type: Grant
    Filed: October 8, 2003
    Date of Patent: July 13, 2010
    Assignee: SiGe Semiconductor Inc.
    Inventor: Alan J. A. Trainor
  • Patent number: 7756500
    Abstract: An integrated front-end filter for a tuner provides an array of from several to a multitude of passbands, each for passing at least one but less than all channels designated in a band of frequencies. Each passband is exclusively selectable. The integrated front end filter includes at least one active filter unit with an active reactance element in either of fixed and variable filter configurations and a decoder coupled to said at least one active filter unit and being responsive to a control signal for selecting a one of the passbands. In one example a multitude of active filter units of fixed filter configuration provide the multitude of passbands. Each data is stored at a predetermined location and reproduced in response to a corresponding control data signal from a tuner controller. Each data characterizes one of the plurality of passbands. The filter element is switchable from one passband to another in response to the control data signal.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: July 13, 2010
    Assignee: SiGe Semiconductor Inc.
    Inventors: Stefan Fulga, David Rahn
  • Publication number: 20100149431
    Abstract: An integrated front-end filter for a tuner provides an array of from several to a multitude of passbands, each for passing at least one but less than all channels designated in a band of frequencies. Each passband is exclusively selectable. The integrated front end filter includes at least one active filter unit with an active reactance element in either of fixed and variable filter configurations and a decoder coupled to said at least one active filter unit and being responsive to a control signal for selecting a one of the passbands. In one example a multitude of active filter units of fixed filter configuration provide the multitude of passbands. Each data is stored at a predetermined location and reproduced in response to a corresponding control data signal from a tuner controller. Each data characterizes one of the plurality of passbands. The filter element is switchable from one passband to another in response to the control data signal.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 17, 2010
    Applicant: SiGe Semiconductor Inc.
    Inventors: Stefan Fulga, David Rahn
  • Publication number: 20100149430
    Abstract: An integrated front-end filter for a tuner provides an array of from several to a multitude of passbands, each for passing at least one but less than all channels designated in a band of frequencies. Each passband is exclusively selectable. The integrated front end filter includes at least one active filter unit with an active reactance element in either of fixed and variable filter configurations and a decoder coupled to said at least one active filter unit and being responsive to a control signal for selecting a one of the passbands. In one example a multitude of active filter units of fixed filter configuration provide the multitude of passbands. Each data is stored at a predetermined location and reproduced in response to a corresponding control data signal from a tuner controller. Each data characterizes one of the plurality of passbands. The filter element is switchable from one passband to another in response to the control data signal.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 17, 2010
    Applicant: SiGe Semiconductor Inc.
    Inventors: Stefan Fulga, David Rahn
  • Publication number: 20100140758
    Abstract: An integrated circuit is disclosed having through silicon vias spaced apart one from another and conductors, each coupled to one or more of the through silicon vias, the conductors in aggregate in use forming a segmented conductive plane maintained at a same potential and forming an electromagnetic shield.
    Type: Application
    Filed: December 1, 2009
    Publication date: June 10, 2010
    Applicant: SiGe Semiconductor Inc.
    Inventors: Mark Doherty, Michael McPartlin, Chun-Wen Paul Huang
  • Patent number: 7728663
    Abstract: A collector boost circuit is disclosed for providing a first voltage in a first mode of operation to a power amplifier, and another voltage in a second mode of operation to the power amplifier. The collector boost circuit uses an indicator signal derived by an RF detector to switch between the first and the second mode of operation. The another voltage is a boosted voltage greater than the first voltage and is provided when required during peak excursions to prevent amplifier clipping through a boost capacitor. The another voltage is continuous and varies in accordance with the detected peak signal amplitude.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: June 1, 2010
    Assignee: SiGe Semiconductor Inc.
    Inventors: Gordon G. Rabjohn, Johan Grundlingh, Edward J. Whittaker
  • Patent number: 7702301
    Abstract: A method of reducing distortion in the output of an amplifier is provided. The method comprises subtractively combining an error signals with the appropriate phase shift with input signals to be amplified. The error signal being generated by subtractively combining a fed-forward portion of the input signal with a portion of the fed-back amplified output signal, and signal processing applied to it between its generation and application to correcting the input signal in the baseband domain. The error therefore being down-converted, filtered, and up-converted in the feedback path. The filtered baseband error signal components providing inputs to a controller which adjusts active elements of the amplification and feedback path in order to minimize the distortion within the output of the amplifier.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: April 20, 2010
    Assignee: Sige Semiconductor Inc.
    Inventors: Gordon G. Rabjohn, Johan Grundlingh
  • Patent number: 7689180
    Abstract: A method of reducing distortion in the output of an amplifier is provided. The method comprises subtractively combining baseband error signals with the appropriate phase shift with baseband input signals, the baseband error signals generated by subtractively combining delayed fed-forward portions of the baseband input signals with baseband converted portions of a fed-back amplified output signal, the amplified output signal being a distorted replica of combined up-converted baseband input signals. The baseband error signals being filtered prior to the combining function, and also providing inputs to a controller which adjusts active elements of the amplification and fed-back paths in order to minimize the distortion within the output of the amplifier.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: March 30, 2010
    Assignee: SiGe Semiconductor Inc.
    Inventors: Johan Grundlingh, Howard James Smith, John Nisbet, Gordon G. Rabjohn
  • Patent number: 7680468
    Abstract: A method of reducing distortion in the output of an amplifier is provided. The method comprises subtractively combining an error signals with the appropriate phase shift with input signals to be amplified. The error signal being generated by subtractively combining a fed-forward portion of the input signal with a portion of the fed-back amplified output signal, and signal processing applied to it between its generation and application to correcting the input signal in the baseband domain. The error therefore being down-converted, filtered, and up-converted in the feedback path. The filtered baseband error signal components providing inputs to a controller which adjusts active elements of the amplification and feedback path in order to minimize the distortion within the output of the amplifier.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: March 16, 2010
    Assignee: SIGE Semiconductor Inc.
    Inventors: Gordon G. Rabjohn, Johan Grundlingh
  • Publication number: 20100007414
    Abstract: A bias control circuit is provided comprising an input port for receiving a signal indicative of an amplitude of a supply voltage provided to a multi stage power amplifier circuit. Electronic circuitry, electrically coupled to the input port, generates a bias control signal in dependence upon the signal indicative of a supply voltage for provision to a first stage power amplifier of the multi stage power amplifier circuit. The bias control signal is generated such that a gain change of the multi stage power amplifier circuit due to a supply voltage change is substantially compensated.
    Type: Application
    Filed: July 8, 2009
    Publication date: January 14, 2010
    Applicant: SiGe Semiconductor Inc.
    Inventors: Kenneth Searle, Edward J. Whittaker
  • Publication number: 20090325527
    Abstract: A dual band amplifier is provided comprising a first matching circuit disposed in a first radiofrequency path between an input port and a first amplifier and a second matching circuit disposed in a second radiofrequency path between the input port and a second amplifier. The first matching circuit transforms a first input impedance of the first amplifier to a predetermined input port impedance when the radiofrequency signal is in a first frequency range and transmits the first input impedance to the input port when the radiofrequency signal is in the second frequency range. The second matching circuit transforms the second input impedance to the input port impedance when the input signal is in the second frequency range and transmits the second input impedance to the input port when the radiofrequency signal is in the first frequency range.
    Type: Application
    Filed: June 24, 2009
    Publication date: December 31, 2009
    Applicant: SIGE SEMICONDUCTOR INC.
    Inventor: Gordon G. RABJOHN
  • Publication number: 20090023434
    Abstract: Low cost semiconductor manufacturing techniques have provided consumers with a wide range of electronic devices supporting communications according to multiple standards. These electronic devices will be deployed within many operational jurisdictions, particularly with roaming features, such as Japan, Europe, Asia-Pacific, South America and North America. However, operational compliance requirements can vary substantially with these different jurisdictions. Current electronic devices are designed, manufactured, calibrated and operated according to a specification providing compliance with broad range of operational jurisdictions despite the performance limitations this applies in many of the operational jurisdictions. Accordingly, there is provided a method of dynamically configuring the electronic device based upon a geographically based determination of the operational jurisdiction from global navigation systems data received by the electronic device.
    Type: Application
    Filed: May 28, 2008
    Publication date: January 22, 2009
    Applicant: SiGe Semiconductor Inc.
    Inventors: Alan Trainor, Darcy Poulin
  • Publication number: 20080297247
    Abstract: A method of reducing distortion in the output of an amplifier is provided. The method comprises subtractively combining an error signals with the appropriate phase shift with input signals to be amplified. The error signal being generated by subtractively combining a fed-forward portion of the input signal with a portion of the fed-back amplified output signal, and signal processing applied to it between its generation and application to correcting the input signal in the baseband domain. The error therefore being down-converted, filtered, and up-converted in the feedback path. The filtered baseband error signal components providing inputs to a controller which adjusts active elements of the amplification and feedback path in order to minimize the distortion within the output of the amplifier.
    Type: Application
    Filed: May 30, 2007
    Publication date: December 4, 2008
    Applicant: SiGe Semiconductor Inc.
    Inventors: Gordon G. Rabjohn, Johan Grundlingh