Patents Assigned to Stratasys, Inc.
  • Patent number: 11939480
    Abstract: A sulfonated water-dispersible thermoplastic copolymer material for use as a support material in an additive manufacturing process is made by a method comprising providing a selected thermoplastic copolymer having an acid or an anhydride group; esterifying the acid group of the selected thermoplastic copolymer with a hydroxyl-functionalized sulfonate salt, or amidizing the acid group of the selected thermoplastic copolymer with an amine sulfonate salt, or imidizing the anhydride group of the selected thermoplastic copolymer with an amine sulfonate salt. The esterification, the amidization or the imidization results in a sulfonated water thermoplastic dispersible copolymer having a glass transition temperature suitable to provide an effective support during the additive manufacturing process and wherein the sulfonated water-dispersible thermoplastic copolymer will disperse in tap water in less than 1 hour.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: March 26, 2024
    Assignee: Stratasys, Inc.
    Inventor: William R. Priedeman, Jr.
  • Patent number: 11939418
    Abstract: A photo-curable composition can include a photo-curable resin and a photoinitiator. The photo-curable composition can typically have a shear viscosity of less than 1 Pa·s at 100° C. at a shear rate of 50 s?1 and can typically include a first prepolymer, a second prepolymer, and a reactive diluent.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: March 26, 2024
    Assignee: STRATASYS, INC.
    Inventors: Liang Chen, Alan D. Bushmire, Vahid Karimkhani
  • Patent number: 11926748
    Abstract: Thermoset compositions and methods for forming three-dimensional articles via an additive fabrication process, and articles made therefrom are disclosed herein. In an embodiment, a composition comprises a first network-forming component comprising a first oligomer comprising a backbone and having at least 2 polymerizable groups, one or more first network monomers, and a first network initiator. The backbone of the first oligomer comprises a polyepoxide based on Bisphenol A, F, or S, a polyepoxide based on hydrogenated Bisphenol A, F, or S, a polycarbonate, or a polyimide. The composition may further comprise a second network-forming component.
    Type: Grant
    Filed: October 4, 2022
    Date of Patent: March 12, 2024
    Assignee: STRATASYS, INC.
    Inventors: Paulus Antonius Maria Steeman, Marco Marcus Matheus Driessen, Guido Joseph Elisabeth Hensen
  • Publication number: 20240076471
    Abstract: Matrix-filled liquid radiation curable resin compositions for additive fabrication are described and claimed. Such resins include a cationically polymerizable component that is an aliphatic epoxide, a multifunctional (meth)acrylate component, a cationic photoinitiator, a free-radical photo initiator, and a matrix of inorganic fillers, wherein the matrix further constitutes prescribed ratios of at least one microparticle constituent and at least one nanoparticle constituent. Also described and claimed is a process for using the matrix-filled liquid radiation curable resins for additive fabrication to create three dimensional parts, and the three-dimensional parts made from the liquid radiation curable resins for additive fabrication.
    Type: Application
    Filed: November 1, 2023
    Publication date: March 7, 2024
    Applicant: STRATASYS, INC.
    Inventors: Mingbo HE, Beth RUNDLETT
  • Patent number: 11919238
    Abstract: A method of printing a 3D part with an additive manufacturing system includes printing a first portion of the part and pre-heating the first portion of the part along an upcoming tool path to a temperature at or above a material-specific bonding temperature and below a degradation temperature of the material. Material is extruding material onto the first portion along the pre-heated tool path while the temperature along the part surface remains at or above a material-specific bonding temperature and below the degradation temperature of the material thereby forming a newly extruded road. The method includes cooling the newly extruded road along the pre-heated tool path to remove heat imparted by the preheating step such that a thermally stable temperature is reached, wherein the preheating, extruding and cooling is performed in less than ten seconds.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: March 5, 2024
    Assignee: Stratasys, Inc.
    Inventors: Clint Newell, Jason Robert Nixon, Timothy Diekmann
  • Patent number: 11919242
    Abstract: A method for calibrating a 3D printer includes the steps of providing information obtained in a factory calibration indicating a center of an inner diameter of a tip orifice in a metal extrusion nozzle and a center of a tip surface for the nozzle and inductively sensing the nozzle with an eddy current sensor when secured to a print head on a gantry or robotic arm of the 3D printer to identify a sensed location of the center of the tip surface of the nozzle. The method includes determining a location of the center of the inner diameter of the tip orifice on the nozzle on the print head and utilizing the provided information to locate the center of the inner diameter of the tip orifice.
    Type: Grant
    Filed: December 27, 2021
    Date of Patent: March 5, 2024
    Assignee: Stratasys, Inc.
    Inventors: Michael Bosveld, Thomas Peter Paul
  • Patent number: 11911958
    Abstract: A polymeric material used for 3D printing is preheated, at a first zone in a 3D printer, to a temperature in excess of its glass transition temperature prior to being melted, at a second zone, for incorporation into a build object. This enables the polymer to be processed more rapidly than in the prior art.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: February 27, 2024
    Assignee: Stratasys, Inc.
    Inventors: Armando Armijo, Riley Reese
  • Patent number: 11910931
    Abstract: It is a feature of a porous body (10, 20) comprising a three-dimensional network of node points (200) joined to one another by struts (100), and a void volume (300) present between the struts (100), that the struts (100) have an average length of ?200 to ?50 mm, the struts (100) have an average thickness of ?100 ?m to ?5 mm, and that the porous body has a compression hardness (40% compression, DIN EN ISO 3386-1: 2010-09) in at least one spatial direction of ?10 to ?100 kPa. The porous body according to the invention combines the advantages of a conventional mattress or cushion with ventilatability which results from its porous structure and is not achievable in conventional foams. The invention further relates to a method of producing such a porous body (10, 20) and to an apparatus comprising said body (10, 20) for supporting and/or bearing a person.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: February 27, 2024
    Assignee: Stratasys, Inc.
    Inventors: Dirk Achten, Thomas Büsgen, Dirk Dijkstra, Nicolas Degiorgio, Roland Wagner, Levent Akbas, Peter Reichert, Jürgen Hättig
  • Patent number: 11904542
    Abstract: A platen assembly for use with an extrusion-based 3D printer includes a grid assembly comprising at least a 4×2 framework of interlocked perpendicular x direction beams and y direction beams, providing a substantially planar upper surface and a bottom surface. The platen assembly includes a platen comprising a thin metal sheet supported on the upper surface of the grid assembly and secured to the grid assembly such that the top surface provides a substantially flat build surface. The x direction beams, the y direction beams and the platen are constructed of substantially a same thermal expansion properties, and wherein the build surface of the platen has a build surface area of at least 400 square inches and maintains its flatness to within a flatness tolerance of 0.020 inches over a temperature range of at least 20 C-300 C.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: February 20, 2024
    Assignee: Stratasys, Inc.
    Inventors: Jeff Lee Chapman, Robert Skubic, Bryan Migliori, Benjamin L Braton, Patrick W. Anderson, Josh Durand, Colin Schiel
  • Patent number: 11905360
    Abstract: The invention relates to a method for producing a polymer comprising the following steps: (A) depositing a radically cross-linkable resin, obtaining a radically cross-linked resin; and (B) treating the radically cross-linked resin under conditions which are sufficient to trigger a chemical reaction that is different from the radical cross-linking in the radically cross-linked resin. The radically cross-linkable resin comprises a curable component, in which there are NCO groups, olefinic C?C double bonds and epoxide groups, and the chemical reaction in the radically cross-linked resin that is different from the radical cross-linking is the reaction of NCO groups and epoxide groups to form oxazolidinone groups.
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: February 20, 2024
    Assignee: STRATASYS, INC.
    Inventors: Dirk Achten, Thomas Buesgen, Roland Wagner, Florian Stempfle, Christoph Tomczyk
  • Patent number: 11891469
    Abstract: Provided is a photopolymerizable composition comprising a blend of: a) from 40 wt. % to 70 wt. % of at least one urethane component; b) from 25 wt. % to 70 wt % of at least one monofunctional reactive diluent; c) from 0.1 wt. % to 5 wt. % of at least one initiator; and d) from 2 wt. % to 10 wt % of an amine-functional (meth)acrylate monomer. Also provided is a process of producing a photopolymerizable composition by blending these ingredients. Further provided is a process of producing a three-dimensional object, by depositing the photopolymerizable composition atop a carrier; depositing additional photopolymerizable composition atop a previously applied layer wherein the depositing of the photopolymerizable composition comprises introducing energy.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: February 6, 2024
    Assignee: STRATASYS, INC.
    Inventor: Liang Chen
  • Publication number: 20240034879
    Abstract: The present disclosure is directed to pulverulent thermoplastic polymer blends comminuted to a particle size of less than 300 ?m. The pulverulent thermoplastic polymer blends can include a first thermoplastic polyurethane and a second thermoplastic polyurethane at a weight ratio of from about 90:10 to about 30:70 first thermoplastic polyurethane to second thermoplastic polyurethane. The first thermoplastic polyurethane can include a reaction product of a first reaction mixture consisting of or consisting essentially of an aliphatic diisocyanate having a number average molecular weight of from 140 g/mol to 170 g/mol and an aliphatic diol having a number average molecular weight of from 62 g/mol to 120 g/mol.
    Type: Application
    Filed: October 11, 2023
    Publication date: February 1, 2024
    Applicant: Stratasys, Inc.
    Inventors: Liang Chen, Chen Xu, Leslie J. Vescio, Bruce D. Lawrey
  • Patent number: 11886774
    Abstract: The hardware and software properties of a three-dimensional printer can be queried and applied to select suitable directly printable models for the printer, or to identify situations where a new machine-ready model must be generated. The properties may be any properties relevant to fabrication including, e.g., physical properties of the printer, printer firmware, user settings, hardware configurations, and so forth. A printer may respond to configuration queries with a dictionary of capabilities or properties, and this dictionary may be used to select suitable models, or determine when a new model must be created. Similarly, when a printable model is sent to the printer, metadata for the printable model may be compared to printer properties in the dictionary to ensure that the model can be fabricated by the printer.
    Type: Grant
    Filed: December 30, 2022
    Date of Patent: January 30, 2024
    Assignee: Stratasys, Inc.
    Inventors: Alison N. Leonard, Joseph Sadusk
  • Patent number: 11878461
    Abstract: A filament for use in an extrusion-based additive manufacturing system includes an elastomeric core and a harder, non-elastomeric shell. The core compositionally comprising an elastomeric core material having a flexural modulus of less than 31,000 psi and a durometer of less than 80 Shore. The shell overlays the core portion and compositionally comprises a non-elastomeric thermoplastic shell material that is substantially miscible with the elastomeric core material, wherein the core material and the shell material have the same monomer chemistry. The non-elastomeric thermoplastic shell material has a flexural modulus that is greater than the flexural modulus of the elastomeric core material by at least a factor of five, wherein the shell provides sufficient strength or stiffness to the filament such that filament can be utilized as a feedstock in the extrusion-based additive manufacturing system.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: January 23, 2024
    Assignee: Stratasys, Inc.
    Inventors: William J. Swanson, William R. Priedeman, Jr.
  • Patent number: 11878472
    Abstract: An additive manufacturing system including a base assembly and a tray assembly. The base assembly includes a build window, substantially transparent to electromagnetic radiation; a projection system configured to project electromagnetic radiation toward an upper surface of the build window; and a tray seat arranged around a perimeter of the build window. The tray assembly is configured to engage with the base assembly in an engaged configuration and includes: a tray structure defining a registration feature configured to engage the tray seat to locate an aperture proximal to the upper surface of the build window in the engaged configuration; and a separation membrane that is configured to laminate across the upper surface of the build window in response to an evacuation of gas from an interstitial region and configured to separate from the build window in response to injection of gas into the interstitial region.
    Type: Grant
    Filed: July 29, 2021
    Date of Patent: January 23, 2024
    Assignee: Stratasys, Inc.
    Inventors: Christopher Prucha, Joel Ong
  • Patent number: 11878459
    Abstract: Radiation curable compositions for additive fabrication processes, the components cured therefrom, and their use in particle image velocimetry testing methods are described and claimed herein. Such compositions include compounds which induce free-radical polymerization, optionally compounds which induce cationic polymerization, a filler constituent, and a light absorbing component, wherein the compositions are configured to possess certain absorbance values at wavelengths commonly utilized in particle image velocimetry testing. In another embodiment, the compositions include a fluoroantimony-modified compound. Such compositions may be used in particle imaging velocimetry testing methods, wherein the test object utilized is created via additive fabrication and is of a substantially homogeneous construction.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: January 23, 2024
    Assignee: STRATASYS, INC.
    Inventors: Kangtai Ren, Robin Papachristopoulos
  • Patent number: 11866526
    Abstract: Liquid radiation curable compositions are disclosed which are suitable for hybrid (i.e. cationic and free-radical) polymerization when processed via additive fabrication equipment utilizing sources of actinic radiation with peak spectral intensities in the UV/vis region. According to one aspect, the compositions possess a first photoinitiator that is an iodonium salt of a non-fluorinated borate anion. According to another aspect, the composition is substantially devoid of a Norrish Type I and/or Type II photoinitiator. Also disclosed are methods of creating three-dimensional parts via additive fabrication processes utilizing sources of actinic radiation with peak spectral intensities in the UV/vis region employing liquid radiation curable compositions suitable for hybrid polymerization, and the parts cured therefrom.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: January 9, 2024
    Assignee: STRATASYS, INC.
    Inventor: Tai Yeon Lee
  • Patent number: 11861271
    Abstract: A method includes: accessing a part model comprising a three-dimensional representation of a part; accessing a material profile relating exposure energy and three-dimensional polymerization geometry of a material selected for the part; segmenting the part model into a set of model layers; detecting a first upward-facing surface in the part model; defining a first model volume in a first model layer, adjacent the first upward-facing surface, and fully contained within the part model; based on the material profile, calculating a first exposure energy predicted to yield a first three-dimensional polymerization geometry approximating a first contour of the first upward-facing surface when projected onto the material during a build; populating a first print image with the first exposure energy in a first image area corresponding to the first model volume in the first model layer; and storing the first print image in a print file for the part.
    Type: Grant
    Filed: January 18, 2023
    Date of Patent: January 2, 2024
    Assignee: Stratasys, Inc.
    Inventors: Joel Ong, Christopher Prucha, Marshall Ling, Elton Cheung
  • Patent number: D1013745
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: February 6, 2024
    Assignee: Stratasys, Inc.
    Inventor: Brett Johnson
  • Patent number: D1014586
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: February 13, 2024
    Assignee: Stratasys, Inc.
    Inventors: Paul Leavitt, Aaron Gregg, Ben Krall, Bryan Migliori, James Flannigan