Patents Assigned to Stratasys, Inc.
  • Patent number: 11247387
    Abstract: A hold and release platen system for use in extrusion-based additive manufacturing system includes a platen, a vacuum source and a pressurized air source. The platen has a surface including a plurality of holes therethrough. The vacuum source is configured to provide a vacuum through the plurality of holes, and the pressurized air source is configured to eject pressurized fluid through the plurality of holes. A method includes positioning a sheet substrate on the platen surface; pulling a vacuum through one or more holes in the platen surface to secure the sheet substrate; printing a part on the sheet substrate by moving a print head along a tool path and extruding material in the path; and ejecting pressurized air through the one or more holes to create an air bearing beneath the substrate thereby facilitating removal of the sheet substrate and the printed part from the platen.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: February 15, 2022
    Assignee: Stratasys, Inc.
    Inventors: Aaron Barclay, Adam Watterson
  • Patent number: 11220062
    Abstract: A water-dispersible addition-type sulfonated thermoplastic copolymer material for use as a consumable feedstock additive manufacturing, wherein the water-dispersible thermoplastic copolymer is a reaction product of an addition-type reaction of a metal sulfonated monomer, the water-dispersible sulfonated thermoplastic copolymer being dispersible in tap water in less than one hour.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: January 11, 2022
    Assignee: Stratasys, Inc.
    Inventor: William R. Priedeman, Jr.
  • Patent number: 11213998
    Abstract: A liquefier assembly for use in an additive manufacturing system to print three-dimensional parts. In one aspect, the liquefier assembly includes a liquefier that is transversely compressible, and having an inlet end configured to receive a consumable material in a solid or molten state and an outlet end, a nozzle at the outlet end, and an actuator mechanism configured to transversely compress and expand the liquefier in a controlled manner In another aspect, the liquefier assembly is self heating.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: January 4, 2022
    Assignee: Stratasys, Inc.
    Inventors: J. Samuel Batchelder, William J. Swanson
  • Patent number: 11198252
    Abstract: A multiple axis robotic additive manufacturing system includes a robotic arm movable in six degrees of freedom. The system includes a build platform movable in at least two degrees of freedom and independent of the movement of the robotic arm to position the part being built to counteract effects of gravity based upon part geometry. The system includes an extruder mounted at an end of the robotic arm. The extruder is configured to extrude at least part material with a plurality of flow rates, wherein movement of the robotic arm and the build platform are synchronized with the flow rate of the extruded material to build the 3D part.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: December 14, 2021
    Assignee: Stratasys, Inc.
    Inventor: Clint Newell
  • Patent number: 11192298
    Abstract: A method for additive manufacturing a part using fused deposition modeling 3D printing technology includes projecting a laser image from one or more laser emitters onto a previously printed bead or beads of thermoplastic material forming a portion of the part, along a tool path for a next bead in a subsequent part layer. The laser image has a width of between about 50% to 75% of a commanded beadwidth of the next bead, and is moved along a tool path that is generally transverse to the width thereof, to thereby selectively irradiate and heat the previously printed thermoplastic material to at least a bonding temperature thereof but below a degradation temperature. A bead of thermoplastic material is extruded from an extrusion head and deposited along the tool path while at least a top surface portion of the irradiated material remains at or above its bonding temperature, so that strong adhesion occurs between part layers.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: December 7, 2021
    Assignee: Stratasys, Inc.
    Inventors: Jason Robert Nixon, Clint Newell, Timothy Diekmann
  • Patent number: 11186679
    Abstract: A water dispersible sulfopolymer for use as a material in the layer-wise additive manufacture of a 3D part made of a non water dispersible polymer wherein the water dispersible polymer is a reaction product of a metal sulfo monomer, the water dispersible sulfo-polymer being dispersible in water resulting in separation of the water dispersible polymer from the 3D part made of the non water dispersible polymer.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: November 30, 2021
    Assignee: Stratasys, Inc.
    Inventor: William R. Priedeman, Jr.
  • Patent number: 11161336
    Abstract: An apparatus and a method using the apparatus provides heated air in an additive manufacturing process for building a three-dimensional part. The method comprises providing a stream of flowable part material at an initial build level, the initial build level being positioned in and defining a horizontal plane wherein the stream of flowable material is being initially disposed on previously deposited part material. Heated air is provided at a selected temperature corresponding to the temperature of the stream of flowable part material such that the stream of flowable part material deposits on previously deposited part material in an adhering fashion thereby forming the three-dimensional part wherein the heated air is provided in the horizontal plane of the initial build level.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: November 2, 2021
    Assignee: Stratasys, Inc.
    Inventors: Peter D. Schuller, Jordan Paul Nadeau, Joel Ordell Ostby, Shawn Michael Koop
  • Patent number: 11148374
    Abstract: A method for printing a three-dimensional part with an additive manufacturing system, which includes providing a part material that compositionally has one or more semi-crystalline polymers and one or more secondary materials that are configured to retard crystallization of the one or more semi-crystalline polymers, where the one or more secondary materials are substantially miscible with the one or more semi-crystalline polymers. The method also includes melting the part material in the additive manufacturing system, forming at least a portion of a layer of the three-dimensional part from the melted part material in a build environment, and maintaining the build environment at an annealing temperature that is between a glass transition temperature of the part material and a cold crystallization temperature of the part material.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: October 19, 2021
    Assignee: Stratasys, Inc.
    Inventors: Luke M. B. Rodgers, Vittorio L. Jaker
  • Patent number: 11148362
    Abstract: A rotary additive manufacturing system for producing 3D parts in a layer-wise manner includes a silo support, a tool support, a plurality of silos, and a part developer. The tool support overlays a first side of the silo support, and is configured to rotate about a central axis relative to the silo support. The silos are each attached to the silo support and extend along the central axis from a second side of the silo support that is opposite the first side. The part developer is supported by the tool support, and is configured to build a 3D part within each of the silos in a layer-by-layer manner during rotation of the tool support relative to the silo support.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: October 19, 2021
    Assignee: Stratasys, Inc.
    Inventors: Sydney Crump, S. Scott Crump
  • Patent number: 11123919
    Abstract: A layer-by layer method for additive manufacturing that includes: photocuring a first volume of resin to form a layer of a build at an upper surface of a separation membrane laminated over a build window; injecting a fluid into an interstitial region between the separation membrane and the build window; retracting the build from the build window; evacuating the fluid from the interstitial region; and photocuring a second volume of liquid resin to form a subsequent layer of the build between an upper surface of a separation membrane and the previous layer of the build.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: September 21, 2021
    Assignee: Stratasys, Inc.
    Inventors: Christopher Prucha, Joel Ong
  • Patent number: 11123918
    Abstract: A layer-by layer method for additive manufacturing that includes: photocuring a first volume of resin to form a layer of a build at an upper surface of a separation membrane laminated over a build window; injecting a fluid into an interstitial region between the separation membrane and the build window; retracting the build from the build window; evacuating the fluid from the interstitial region; and photocuring a second volume of liquid resin to form a subsequent layer of the build between an upper surface of a separation membrane and the previous layer of the build.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: September 21, 2021
    Assignee: Stratasys, Inc.
    Inventors: Christopher Prucha, Joel Ong
  • Patent number: 11124961
    Abstract: A large-scale additive manufacturing system for printing a structure includes an extrusion system and a knitting system. The extrusion system includes a nozzle configured to receive a supply of structural material and to selectively dispense the structural material in flowable form, and a first gantry configured to move the nozzle along toolpaths defined according to a structure to be printed such that structural material may be dispensed along the toolpaths to print a series of structural layers, wherein the series of structural layers bond together to form all or a portion of the structure.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: September 21, 2021
    Assignee: Stratasys, Inc.
    Inventors: S. Scott Crump, J. Samuel Batchelder, Susan M Hayes Jacobson
  • Patent number: 11110662
    Abstract: A method of printing a hollow part with a robotic additive manufacturing system includes extruding thermoplastic material onto a build platform movable in at least two degrees of freedom in a helical pattern along a continuous 3D tool path with an extruder mounted on a robotic arm, to thereby print a hollow member having a length and a diameter. The method includes orienting the hollow member during printing by moving the build platform based on a geometry of the hollow member wherein the movement of the build platform and the movement of the robotic arm are synchronized to print the part without support structures.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: September 7, 2021
    Assignee: Stratasys, Inc.
    Inventor: Clint Newell
  • Patent number: 11104075
    Abstract: An additive manufacturing system including a base assembly and a tray assembly. The base assembly includes a build window, substantially transparent to electromagnetic radiation; a projection system configured to project electromagnetic radiation toward an upper surface of the build window; and a tray seat arranged around a perimeter of the build window. The tray assembly is configured to engage with the base assembly in an engaged configuration and includes: a tray structure defining a registration feature configured to engage the tray seat to locate an aperture proximal to the upper surface of the build window in the engaged configuration; and a separation membrane that is configured to laminate across the upper surface of the build window in response to an evacuation of gas from an interstitial region and configured to separate from the build window in response to injection of gas into the interstitial region.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: August 31, 2021
    Assignee: Stratasys, Inc.
    Inventors: Christopher Prucha, Joel Ong
  • Patent number: 11104058
    Abstract: An additive manufacturing system configured to a 3D print using a metal wire material includes a drive mechanism configured to feed the metal feedstock into an inlet tube and a liquefier. The liquefier has a chamber configured to accept the metal feedstock from the inlet tube. The metal feed stock is heated in the chamber such that a melt pool is formed in the chamber. The liquefier has an extrusion tube in fluid communication with the chamber, the extrusion tube having a length (L) and a diameter (D) wherein the ratio of length to diameter (L/D) ranges from about 4:1 to about 20:1. The system has a platen with a surface configured to accept melted material from the liquefier, wherein the platen and the liquefier move in at least three dimensions relative to each other.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: August 31, 2021
    Assignee: Stratasys, Inc.
    Inventors: Robert L. Zinniel, S. Scott Crump, Dominic F. Mannella
  • Patent number: 11104041
    Abstract: A consumable material configured for use in an additive manufacturing system includes a polymeric matrix having polyetherersulfone (PES) in a range of between about 30 wt % and about 85 wt % of the polymeric matrix and polyphenylene sulfide (PPS) in a range between about 15 wt % and about 70 wt % of the polymeric matrix, wherein the polymeric matrix is in a media form suitable for processing in the additive manufacturing system and having a Tg that is about 190° C. or greater and a coefficient of thermal expansion of less than about 30 ?m/(m·° C.). The consumable material is suitable for use in 3D printing of composite mold tools.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 31, 2021
    Assignee: Stratasys, Inc.
    Inventors: Vittorio L. Jaker, Brandon Cernohous
  • Patent number: 11097474
    Abstract: A liquefier assembly for use in an extrusion-based additive manufacturing system includes a liquefier tube compositionally comprising a metallic material, and having a first end and a second end offset along a longitudinal axis, and a flow channel extending from the first end to the second end. The assembly further includes an extrusion tip compositionally comprising a metallic material and coupled to the second end of the liquefier tube, the extrusion tip having a cavity having an interior shoulder wherein the cavity terminates in an opening. The liquefier includes a hardened insert compositionally comprising a material that is harder than the metallic material of the extrusion tip and the metallic material of the liquefier tube. The hardened insert has an exterior shoulder that engages the interior shoulder of the extrusion tip such that the insert is press fit within the extrusion tip.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: August 24, 2021
    Assignee: Stratasys, Inc.
    Inventors: Bryan Migliori, Shawn Michael Koop, James Flannigan
  • Patent number: 11045997
    Abstract: A support material for use in an additive manufacturing system includes a copolymer of vinyl pyrrolidone (VP) monomers and elastomeric monomers. The elastomeric monomers and the VP monomers are covalently bonded and copolymerized. The support material is thermally stable even at temperatures above 80° C. and is disintegrable in aqueous solutions such as tap water.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: June 29, 2021
    Assignee: Stratasys, Inc.
    Inventors: Adam R. Pawloski, Theresa Sherar
  • Patent number: D938258
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: December 14, 2021
    Assignee: Stratasys, Inc.
    Inventor: Brett Johnson
  • Patent number: D938259
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: December 14, 2021
    Assignee: Stratasys, Inc.
    Inventor: Brett Johnson