Patents Assigned to Stratasys, Inc.
  • Patent number: 11599685
    Abstract: The hardware and software properties of a three-dimensional printer can be queried and applied to select suitable directly printable models for the printer, or to identify situations where a new machine-ready model must be generated. The properties may be any properties relevant to fabrication including, e.g., physical properties of the printer, printer firmware, user settings, hardware configurations, and so forth. A printer may respond to configuration queries with a dictionary of capabilities or properties, and this dictionary may be used to select suitable models, or determine when a new model must be created. Similarly, when a printable model is sent to the printer, metadata for the printable model may be compared to printer properties in the dictionary to ensure that the model can be fabricated by the printer.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: March 7, 2023
    Assignee: Stratasys, Inc.
    Inventors: Alison N. Leonard, Joseph Sadusk
  • Patent number: 11590712
    Abstract: An additive manufacturing system configured to: during a first build cycle of an additive manufacturing process for manufacturing a first layer of a build, sampling a first set of sensor data streams via the sensor suite; calculate a first likelihood of failure of the build based on the first set of sensor data streams; in response to calculating the first likelihood of failure within a first likelihood range, flag the build to indicate the first likelihood of failure; and in response to calculating the first likelihood of failure within a second likelihood range greater than the first likelihood range, pause the additive manufacturing process, and notify an operator of the additive manufacturing system of the first likelihood of failure.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: February 28, 2023
    Assignee: Stratasys, Inc.
    Inventors: Joel Ong, Christopher Prucha
  • Patent number: 11584081
    Abstract: A method for additive manufacturing includes: at a build tray arranged over a build window and containing a resin reservoir of a resin, heating the resin reservoir toward a target bulk resin temperature less than a heat deflection temperature of the resin in a photocured state; at a resin interface between a surface of the build window and the resin reservoir, heating an interface layer of the resin reservoir toward a target reaction temperature; and, in response to the resin reservoir exhibiting a first temperature proximal the target bulk resin temperature and to the interface layer exhibiting a second temperature proximal the target reaction temperature: at the resin interface, selectively photocuring a first volume of the resin to form a first layer of a build adhered to a build platform; and retracting the build platform away from the build window.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: February 21, 2023
    Assignee: Stratasys, Inc.
    Inventors: Joel Ong, Christopher Prucha, Stephanie Benight, Bill Buel
  • Patent number: 11571858
    Abstract: A method of printing a hollow part with a robotic additive manufacturing system includes extruding thermoplastic material onto a build platform movable in at least two degrees of freedom in a helical pattern along a continuous 3D tool path with an extruder mounted on a robotic arm, to thereby print a hollow member having a length and a diameter. The method includes orienting the hollow member during printing by moving the build platform based on a geometry of the hollow member wherein the movement of the build platform and the movement of the robotic arm are synchronized to print the part without support structures.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: February 7, 2023
    Assignee: Stratasys, Inc.
    Inventor: Clint Newell
  • Patent number: 11498281
    Abstract: A multiple axis robotic additive manufacturing system includes a robotic arm movable in six degrees of freedom. The system includes a build platform movable in at least two degrees of freedom and independent of the movement of the robotic arm to position the part being built to counteract effects of gravity based upon part geometry. The system includes an extruder mounted at an end of the robotic arm. The extruder is configured to extrude at least part material with a plurality of flow rates, wherein movement of the robotic arm and the build platform are synchronized with the flow rate of the extruded material to build the 3D part.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: November 15, 2022
    Assignee: Stratasys, Inc.
    Inventor: Clint Newell
  • Patent number: 11498279
    Abstract: A method for additive manufacturing includes: at a build tray arranged over a build window and containing a resin reservoir of a resin, heating the resin reservoir toward a target bulk resin temperature less than a heat deflection temperature of the resin in a photocured state; at a resin interface between a surface of the build window and the resin reservoir, heating an interface layer of the resin reservoir toward a target reaction temperature; and, in response to the resin reservoir exhibiting a first temperature proximal the target bulk resin temperature and to the interface layer exhibiting a second temperature proximal the target reaction temperature: at the resin interface, selectively photocuring a first volume of the resin to form a first layer of a build adhered to a build platform; and retracting the build platform away from the build window.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: November 15, 2022
    Assignee: Stratasys, Inc.
    Inventors: Joel Ong, Christopher Prucha, Stephanie Benight, Bill Buel
  • Patent number: 11498280
    Abstract: A method for additive manufacturing includes: at a build tray arranged over a build window and containing a resin reservoir of a resin, heating the resin reservoir toward a target bulk resin temperature less than a heat deflection temperature of the resin in a photocured state; at a resin interface between a surface of the build window and the resin reservoir, heating an interface layer of the resin reservoir toward a target reaction temperature; and, in response to the resin reservoir exhibiting a first temperature proximal the target bulk resin temperature and to the interface layer exhibiting a second temperature proximal the target reaction temperature: at the resin interface, selectively photocuring a first volume of the resin to form a first layer of a build adhered to a build platform; and retracting the build platform away from the build window.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: November 15, 2022
    Assignee: Stratasys, Inc.
    Inventors: Joel Ong, Christopher Prucha, Stephanie Benight, Bill Buel
  • Patent number: 11491723
    Abstract: A consumable assembly for supplying filament to a 3D printer includes a spool-less filament coil, a payout tube, and a compressive band. The coil of filament is wound in a configuration having a generally cylindrical outer perimeter and an open interior; the coil has a payout hole extending from an inner layer of the coil to an outer layer of the coil and includes a filament strand configured to be withdrawn through the payout hole in response to a pull force, to thereby withdraw filament from the interior of the coil. The payout tube is disposed in the payout hole and provides a filament port. A compressive band is disposed over the outer layer and is configured to exert a compressive radial force on the coil so that the coil maintains its cylindrical shape without deformation, and the filament strand may be drawn through the filament outlet free of kinks, twists or tangles.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: November 8, 2022
    Assignee: Stratasys, Inc.
    Inventors: Caroline Jo Markman, Timothy Hjelsand, Kevin C. Johnson
  • Patent number: 11485085
    Abstract: A low pull force system for feeding a filament along a feed path from a source to a liquefier in a 3D printer includes a low compressive force loading drive for advancing filament from the source, a feed drive for advancing filament into the liquefier, and an in-line accumulator comprising a telescoping joint positioned in the feed path between the loading drive and the feed drive. When the telescoping joint is in a contracted position, the loading drive activates to feed filament into the feed path at a rate faster than a rate at which the feed drive advances filament into the liquefier, causing the telescoping joint to expand and accrue a slack of filament in the feed path. When the telescoping joint reaches an extended position, the loading drive deactivates while the feed drive continues to advance filament into the liquefier, and the slack of filament is consumed.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: November 1, 2022
    Assignee: Stratasys, Inc.
    Inventors: Cody Smith, Christopher Herbst, Ross Michalkiewicz, Shawn Michael Koop
  • Patent number: 11485129
    Abstract: A probe for an additive manufacturing system includes a probe body having a first air port therethrough between an inlet and an outlet, and a location sensing probe extending from the probe body. The location sensing probe includes a probe end and a probe bar, the probe bar coupled between the probe body and the probe end, and a channel surrounding the probe bar, the channel having an inner tube having an inlet proximate the probe body and an outlet proximate the probe end. A method of determining a position of an item being printed in an additive manufacturing system, includes probing the position with a location sensing probe having a resolution finer than a print resolution of the print head.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: November 1, 2022
    Assignee: Stratasys, Inc.
    Inventors: Brent Jorgenson, Michael D. Bosveld, Logan R. Kiene, Jerome W. Goetzke, Benjamin L. Braton, David Mulcrone
  • Patent number: 11485079
    Abstract: A z-lift and leveling assembly for leveling a platen in a heated chamber of a 3D printer includes first, second, third, and fourth z-actuators in a rectangular configuration. Each z-actuator includes a linear drive configured to supply motion in the z-direction and a mounting bracket secured to the linear drive and configured to move with the linear drive in the z-direction. The assembly includes a set of four pin couplings each associated with one of the first, second, third and fourth z-actuators. Each pin coupling includes a pivot block secured to the mounting bracket with a first pivot pin forming a first pin joint between the mounting bracket and the pivot block, where the pivot block is configured to move relative to the mounting bracket about a first pivot axis of the first pivot pin. The pivot block is secured to the platen or an arm of the platen with a second pivot pin forming a second pin joint such that the pivot block and the platen move relative to each other about a second pivot axis.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: November 1, 2022
    Assignee: Stratasys, Inc.
    Inventors: Josh Durand, Jeff Lee Chapman
  • Patent number: 11485069
    Abstract: A print assembly 18 for use in an additive manufacturing system 10 to print three-dimensional parts 12, which includes a coarse positioner 40, a fine positioner 42, and a liquefier assembly 20, where a portion of the liquefier assembly 20 is operably mounted to the fine positioner 42 such that the fine positioner 42 is configured to move the portion of the liquefier assembly 20 relative to the coarse positioner 40.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: November 1, 2022
    Assignee: Stratasys, Inc.
    Inventors: J. Samuel Batchelder, William J. Swanson
  • Patent number: 11433599
    Abstract: A print assembly for use in an additive manufacturing system to print three-dimensional parts, which includes a coarse positioner, a fine positioner, and a liquefier assembly, where a portion of the liquefier assembly is operably mounted to the fine positioner such that the fine positioner is configured to move the portion of the liquefier assembly relative to the coarse positioner.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: September 6, 2022
    Assignee: Stratasys, Inc.
    Inventors: J. Samuel Batchelder, William J. Swanson
  • Patent number: 11407178
    Abstract: An additive manufacturing system includes an extruder that includes a drive mechanism, a nozzle, and a pressure sensor. The drive mechanism is configured to feed a molten consumable material. The nozzle is attached at a distal end of the extruder and includes a nozzle tip, through which the molten consumable material is discharged as an extrudate. A pressure interface is fluidically coupled to an interior cavity of the nozzle. The pressure sensor is configured to operably measure a pressure within the interior cavity of the nozzle through the pressure interface.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: August 9, 2022
    Assignee: Stratasys, Inc.
    Inventor: Michael D. Bosveld
  • Patent number: 11390033
    Abstract: An additive manufacturing system includes an extruder having a motor and a pressure sensor. A filter receives speed values for the motor and generates a predicted pressure value from the speed values. A response threshold module sets a response threshold pressure value based on the predicted pressure value such that when the response threshold pressure value is between a pressure value from the pressure sensor and the predicted pressure value, a response is executed.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: July 19, 2022
    Assignee: Stratasys, Inc.
    Inventors: Michael D. Bosveld, Zachary Mady, Mark Schletty
  • Patent number: 11376798
    Abstract: An additive manufacturing system configured to: during a first build cycle of an additive manufacturing process for manufacturing a first layer of a build, sampling a first set of sensor data streams via the sensor suite; calculate a first likelihood of failure of the build based on the first set of sensor data streams; in response to calculating the first likelihood of failure within a first likelihood range, flag the build to indicate the first likelihood of failure; and in response to calculating the first likelihood of failure within a second likelihood range greater than the first likelihood range, pause the additive manufacturing process, and notify an operator of the additive manufacturing system of the first likelihood of failure.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: July 5, 2022
    Assignee: Stratasys, Inc.
    Inventors: Joel Ong, Christopher Prucha
  • Patent number: 11345781
    Abstract: A melt-processable consumable material configured as a feedstock for use in an additive manufacturing system includes a polymeric matrix comprising one or more polyaryletherketones, wherein the polymeric matrix comprises between about 10 wt % and about 50 wt % of the total weight of the feedstock. The material includes radiation shielding particles dispersed within the polymer matrix wherein the radiation shielding particles comprise between about 50 wt % and less than 90 wt % of the total weight of the feedstock.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: May 31, 2022
    Assignee: Stratasys, Inc.
    Inventors: Andrew Hanson, Neil R. Granlund
  • Patent number: 11338514
    Abstract: An additive manufacturing system includes a substantially moisture-impermeable barrier comprising a guide tube assembly for supplying filament from a filament supply to a print head in an extrusion-based additive manufacturing system, where the print head melts the filament and extrudes the melted filament to form a 3D part. The guide tube assembly includes an inner tube permeable to moisture and an outer tube that s substantially moisture impermeable. The inner tube has an interior passageway configured to receive the filament, and has a relatively low coefficient of friction to minimize drag force as the filament travels through it. The outer tube surrounds the inner tube and provides a substantially moisture-impermeable barrier around the inner tube.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 24, 2022
    Assignee: Stratasys, Inc.
    Inventors: Jordan Paul Nadeau, Peter D. Schuller
  • Patent number: 11273596
    Abstract: A nozzle for printing three-dimensional parts with an additive manufacturing system, the nozzle comprising a nozzle body having an inlet end and a tip end offset longitudinally from the inlet end, a tip pipe for extruding a flowable material, an inner ring extending circumferentially around the tip pipe at the outlet end, an outer ring extending circumferentially around the inner ring, at least one annular recessed groove located circumferentially between the inner ring and the outer ring.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: March 15, 2022
    Assignee: Stratasys, Inc.
    Inventors: William J. Swanson, Dominic F. Mannella, Kevin C. Johnson, Ronald G. Schloesser
  • Patent number: 11267199
    Abstract: A low compressive force filament drive system for use with an additive manufacturing system includes a plurality of drives spaced from each other. Each drive includes a first rotatable shaft and a second rotatable shaft engaged with the first rotatable shaft in a counter rotational configuration. The filament drive system includes a pair of drive wheel, each fixedly attached to a shaft and comprising a groove about a circumference having a substantially smooth surface and positioned on opposing sides of a filament path with a gap therebetween so as to frictionally engage a filament provided in the filament path. The drive includes one or more bridge shafts, wherein each bridge shaft is configured to rotatably couple the adjacent drives of the plurality of drives, wherein the shafts are configured to be directly or indirectly driven by a motor.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: March 8, 2022
    Assignee: Stratasys, Inc.
    Inventors: Cody Smith, Christopher Herbst, Shawn Michael Koop