Patents Examined by Andrew J Golden
  • Patent number: 11973157
    Abstract: Metallization and stringing methods for back-contact solar cells, and resulting solar cells, are described. In an example, in one embodiment, a method involves aligning conductive wires over the back sides of adjacent solar cells, wherein the wires are aligned substantially parallel to P-type and N-type doped diffusion regions of the solar cells. The method involves bonding the wires to the back side of each of the solar cells over the P-type and N-type doped diffusion regions. The method further includes cutting every other one of the wires between each adjacent pair of the solar cells.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: April 30, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventor: Akira Terao
  • Patent number: 11967928
    Abstract: Proposed is a hybrid energy generation device using sunlight and solar heat including a photovoltaic panel in which a plurality of photovoltaic cells are arranged on a front side thereof, a first heat storage pipe having an inlet through which heat transfer fluid is introduced, and having a first slit hole formed on a side thereof in a longitudinal direction, a second heat storage pipe disposed to face the first heat storage pipe, having an outlet through which the heat transfer fluid is discharged, and having a second slit hole formed on a side thereof in a longitudinal direction, two or more third heat storage pipes arranged to connect the first heat storage pipe and the second heat storage pipe, and each having a third slit hole formed on a side thereof in a longitudinal direction, and a heat dissipation panel laminated on a back side of the PV panel.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: April 23, 2024
    Assignee: KUKDONG ENERGY Corp
    Inventors: Myeong Geon Sagong, Tae Yang Kim
  • Patent number: 11961926
    Abstract: The present invention relates to a method for metallizing a front electrode of an N-type solar cell, including: treating an N-type crystalline silicon substrate to form a p+ doped region and a front surface passivation anti-reflection coating on a front surface of the N-type crystalline silicon substrate in an inside-out sequence, printing an aluminum paste on the front surface passivation anti-reflection coating to form a first finger, overprinting a silver paste on the first finger to form a second finger, and printing a front silver paste on the first finger to form a busbar. In the present invention, the superposition of the second finger on the first finger can reduce line resistance while ensuring a good ohmic contact, which further improves the photoelectric conversion efficiency of solar cells. Moreover, since no grooving procedure is required, the process is simplified and cost-efficient.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: April 16, 2024
    Assignee: NANTONG T-SUN NEW ENERGY CO., LTD.
    Inventors: Peng Zhu, Yuan Liu, Mengxue Liu
  • Patent number: 11961929
    Abstract: A thermal management device for a photovoltaic panel includes a phase change material layer attached to a back side of the photovoltaic panel. The thermal management device includes a Seebeck thermoelectric generator having a first surface attached to the phase change material layer. The thermal management further device includes a heat sink attached to a second surface of the Seebeck thermoelectric generator. The heat sink is configured with a sinuous coil, a water inlet port and a water outlet port connected to the sinuous coil, and a plurality of heat fins. The thermal management further device includes a casing box configured to enclose its various components, and a glass cover attached to the casing box and configured to cover a top surface of the photovoltaic panel.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: April 16, 2024
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Kashif Irshad, Md. Hasan Zahir
  • Patent number: 11955928
    Abstract: A solar power generating system includes a solar power generating device (10), a microbubble cleaning device (20) mounted on the solar power generating device, a temperature adjustment device (30) mounted on the solar power generating device, and a controller (40) electrically connected with the solar power generating device, the microbubble cleaning device, and the temperature adjustment device. The microbubble cleaning device produces a liquid containing microbubbles and is controlled by the controller to inject the liquid outward to clean a surface of the solar power generating device. The temperature adjustment device is used to regulate an ambient temperature of the solar power generating device. The controller receives data of power generation from the solar power generating device, and controls on/off operation of the microbubble cleaning device and the temperature adjustment device.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: April 9, 2024
    Assignee: SEASON ENERGY TECHNOLOGY CO., LTD.
    Inventor: Lin-Hung Chang
  • Patent number: 11949031
    Abstract: The present application belongs to the technical field of solar cells, and relates to a p-type bifacial solar cell with partial rear surface field passivation and a preparation method therefor. The solar cell includes a p-type silicon substrate. At the bottom portion of the p-type silicon substrate are arranged, from top to bottom, a silicon oxide passivation layer, an aluminum oxide passivation layer and a rear side silicon nitride anti-reflection layer. A plurality of boron source-doped layers are embedded in the bottom portion of the p-type silicon substrate. Connected to the bottom of each of the boron source-doped layers is a rear side metal electrode layer, which penetrates each of the silicon oxide passivation layer, the aluminum oxide passivation layer and the rear side silicon nitride anti-reflection layer.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: April 2, 2024
    Assignees: Tongwei Solar (Chengdu) Co., Ltd., Tongwei Solar (Meishan) Co., Ltd.
    Inventors: Pu Wang, Yi Xie, Peng Zhang, Shan Sui
  • Patent number: 11949037
    Abstract: Local patterning and metallization of semiconductor structures using a laser beam, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, are described. For example, a method of fabricating a solar cell includes providing a substrate having an intervening layer thereon. The method also includes locating a metal foil over the intervening layer. The method also includes exposing the metal foil to a laser beam, wherein exposing the metal foil to the laser beam forms openings in the intervening layer and forms a plurality of conductive contact structures electrically connected to portions of the substrate exposed by the openings.
    Type: Grant
    Filed: May 13, 2022
    Date of Patent: April 2, 2024
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Pei Hsuan Lu, Benjamin I. Hsia, Taeseok Kim
  • Patent number: 11937507
    Abstract: Integrated circuit devices which include a thermoelectric generator which recycles heat generated by operation of an integrated circuit, into electrical energy that is then used to help support the power requirements of that integrated circuit. Roughly described, the device includes an integrated circuit die having an integrated circuit thereon, the integrated circuit having power supply terminals for connection to a primary power source, and a thermoelectric generator structure disposed in sufficient thermal communication with the integrated circuit die so as to derive, from heat generated by the die, a voltage difference across first and second terminals of the thermoelectric generator structure. A powering structure is arranged to help power the integrated circuit, from the voltage difference across the first and second terminals of the thermoelectric generator. The thermoelectric generator can include IC packaging material that is made from thermoelectric semiconductor materials.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: March 19, 2024
    Assignee: Synopsys, Inc.
    Inventors: Victor Moroz, Jamil Kawa
  • Patent number: 11901860
    Abstract: A solar power system may comprise a back sheet that comprises an interconnect circuit coupling a plurality of cell tiles. A tiled solar cell, comprising a solar cell and encapsulating and glass layers, is inserted into the cell tiles of the back sheet. Each solar cell is individually addressable through the use of the interconnect circuit. Moreover, the interconnect circuit of the back sheet is programmable and allows for dynamic interconnect routing between solar cells.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: February 13, 2024
    Assignee: SAFUL CONSULTING, INC.
    Inventor: Nagendra Srinivas Cherukupalli
  • Patent number: 11889709
    Abstract: A method of fabricating a multi-junction photosensitive device is provided. The method may include fabricating at least two photoactive layers, wherein at least one photoactive layer is fabricated on a transparent substrate, and at least one photoactive layer is fabricated on a reflective substrate, patterning at least one optical filter layer on at least one photoactive layer fabricated on a transparent substrate, and bonding the at least two photoactive layers using cold weld or van der Waals bonding. A multi-junction photosensitive device is also provided. The device may have at least two photoactive layers, and at least one optical filter layer, wherein at least two layers are bonded using cold weld or van der Waals bonding. The optical filter layer may be a Distributed Bragg Reflector.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: January 30, 2024
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Kyusang Lee
  • Patent number: 11888077
    Abstract: A photovoltaic module (1) with a plurality of photovoltaic units (3) each having a positive contact terminal (8) and a negative contact terminal (7), and a single layer back contact substrate (4). The back contact substrate (4) has a positive surface part (6) electrically connected to the positive contact terminal (8) of each of the plurality of photovoltaic units (3), and a negative surface part (5) electrically connected to the negative contact terminal (7) of each of the plurality of photovoltaic units (3). The photovoltaic module (1) further has at least one contact bridge (9a, 9b) in a layer of the photovoltaic module (1) outside of the single layer back contact substrate (4), which provides an electrical connection in the negative surface part (5) and/or in the positive surface part (6).
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: January 30, 2024
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO
    Inventors: Markus Johan Jansen, Koen Maarten de Groot, Jozef Cornelis Petrus Kester
  • Patent number: 11875908
    Abstract: An electrode for beta-photovoltaic cells includes: a substrate formed of a conductive layer with a thickness ranging between about 10 nm to 1 micron; a composite layer of radioluminescent phosphor with radioisotope particles homogeneously dispersed therein formed on conductive substrate with a thickness ranging between about 1 and 25 microns; and a semiconductor comprising a P-i-N/P-u-N junction or a N-i-P-P junction. The radioisotope may be a beta-emitter, such as Ni-63, H-3, Pm-147, or Sr-90/Y-90.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: January 16, 2024
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: John A Russo, Marc S. Litz, William B. Ray, II
  • Patent number: 11871668
    Abstract: A thermoelectric generator includes a substrate and one or more thermoelectric elements on the substrate and each configured to convert a thermal drop across the thermoelectric elements into an electric potential by Seebeck effect. The thermoelectric generator includes a cavity between the substrate and the thermoelectric elements. The thermoelectric generator includes, within the cavity, a support structure for supporting the thermoelectric elements. The support structure has a thermal conductivity lower than a thermal conductivity of the substrate.
    Type: Grant
    Filed: January 26, 2021
    Date of Patent: January 9, 2024
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Paolo Ferrari, Flavio Francesco Villa, Luca Zanotti, Andrea Nomellini, Luca Seghizzi
  • Patent number: 11871670
    Abstract: A generator configured to generate electrical energy from heat, for example from sunlight. The generator includes: a moveable carrier connected to a kinetic-electric converter; and a stationary support. One of the carrier and the support is provided with a magnet and the other is provided with separate ferromagnetic elements. A heat supply is associated with the one of the carrier and the support that is provided with the magnet to direct heat onto successively at least one of the ferromagnetic elements to warm the ferromagnetic element to above a Curie temperature thereof, to thereby impart reciprocal movement of the carrier relative to the support through magnetic interaction between the magnet and the ferromagnetic elements. A cooling system such as a thermo-electric generator or a heat sink is configured for cooling at least one of the magnet and the ferromagnetic elements.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: January 9, 2024
    Assignee: HELIOS NOVA B.V.
    Inventor: Daniel Komkommer
  • Patent number: 11849641
    Abstract: A thermoelectric conversion element of the present disclosure includes a thermoelectric conversion layer, a first metal layer, a second metal layer, a first joining layer, and a second joining layer. At least one of the first joining layer and the second joining layer includes a second alloy. A content of Mg in the second alloy is 84 atm % or more and 89 atm % or less, a content of Cu in the second alloy is 11 atm % or more and 15 atm % or less, and a content of an alkaline earth metal in the second alloy is 0 atm % or more and 1 atm % or less.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: December 19, 2023
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yuriko Kaneko, Tsutomu Kanno
  • Patent number: 11848392
    Abstract: Provided are a solar cell and a photovoltaic module. The solar cell includes: a silicon substrate; a passivation layer provided on a surface of the silicon substrate; a first electrode conductor at least partially arranged on the passivation layer and including a body portion and protruding portions located on two ends of the body portion; and a second electrode conductor at least partially arranged on the passivation layer and at least partially overlapping with the protruding portions. A length of each of the protruding portions in a width direction of the body portion is greater than a width of the body portion.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: December 19, 2023
    Assignee: ZHEJIANG JINKO SOLAR CO., LTD.
    Inventors: Xiaowen Zhang, Wenqi Li, Shijie Zhao, Ding Yu, Jialei Chai, Jie Yang, Menglei Xu
  • Patent number: 11849640
    Abstract: Thermoelectric conversion cells of a thermoelectric conversion element include a thermoelectric conversion layer formed on a main surface of a substrate, an insulating layer covering the thermoelectric conversion layer, a first electrode including a first layer and a second layer, and a second electrode. The first layer connects to the main surface of the thermoelectric conversion layer via a first contact hole, and the second layer covers the first layer. The second electrode connects to the main surface of the thermoelectric conversion layer via a second contact hole. The second layer and the second electrode, and the first layer are formed from materials having different work functions. In thermoelectric conversion cells that are adjacent to each other, the second layer of one of the thermoelectric conversion cells and the second electrode of the other of the thermoelectric conversion cells are formed integrally, and the thermoelectric conversion cells are connected in series.
    Type: Grant
    Filed: December 1, 2022
    Date of Patent: December 19, 2023
    Assignee: TIANMA JAPAN, LTD.
    Inventor: Nobuya Seko
  • Patent number: 11832519
    Abstract: A thermoelectric conversion material is constituted of a semiconductor that contains a constituent element and an additive element having a difference of 1 in the number of electrons in an outermost shell from the constituent element, the additive element having a concentration of not less than 0.01 at % and not more than 30 at %. The semiconductor has a microstructure including an amorphous phase and a granular crystal phase dispersed in the amorphous phase. The amorphous phase includes a first region in which the concentration of the additive element is a first concentration, and a second region in which the concentration of the additive element is a second concentration lower than the first concentration. The first concentration and the second concentration have a difference of not less than 15 at % and not more than 25 at % therebetween.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: November 28, 2023
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., TOYOTA SCHOOL FOUNDATION
    Inventors: Kotaro Hirose, Masahiro Adachi, Tsunehiro Takeuchi
  • Patent number: 11823849
    Abstract: The disclosure provides an efficient and stable inorganic lead-free perovskite solar cell and a method for preparing the same. The solar cell includes a conductive substrate, a PEDOT: PSS layer, an inorganic lead-free CsSnI3 perovskite layer, a C60 layer, a BCP layer, and a metal counter electrode layer arranged in order from bottom to top, wherein the inorganic lead-free CsSnI3 perovskite layer is a CsSnI3 perovskite layer passivated by a thioureas small-molecule organic compound.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: November 21, 2023
    Assignee: Shandong University
    Inventors: Longwei Yin, Bo Li
  • Patent number: 11824126
    Abstract: Aligned metallization approaches for fabricating solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a semiconductor layer over a semiconductor substrate. A first plurality of discrete openings is in the semiconductor layer and exposes corresponding discrete portions of the semiconductor substrate. A plurality of doped regions is in the semiconductor substrate and corresponds to the first plurality of discrete openings. An insulating layer is over the semiconductor layer and is in the first plurality of discrete openings. A second plurality of discrete openings is in the insulating layer and exposes corresponding portions of the plurality of doped regions. Each one of the second plurality of discrete openings is entirely within a perimeter of a corresponding one of the first plurality of discrete openings. A plurality of conductive contacts is in the second plurality of discrete openings and is on the plurality of doped regions.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: November 21, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Taeseok Kim, David Smith