Patents Examined by Andrew J Golden
  • Patent number: 11824126
    Abstract: Aligned metallization approaches for fabricating solar cells, and the resulting solar cells, are described. In an example, a solar cell includes a semiconductor layer over a semiconductor substrate. A first plurality of discrete openings is in the semiconductor layer and exposes corresponding discrete portions of the semiconductor substrate. A plurality of doped regions is in the semiconductor substrate and corresponds to the first plurality of discrete openings. An insulating layer is over the semiconductor layer and is in the first plurality of discrete openings. A second plurality of discrete openings is in the insulating layer and exposes corresponding portions of the plurality of doped regions. Each one of the second plurality of discrete openings is entirely within a perimeter of a corresponding one of the first plurality of discrete openings. A plurality of conductive contacts is in the second plurality of discrete openings and is on the plurality of doped regions.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: November 21, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Taeseok Kim, David Smith
  • Patent number: 11824127
    Abstract: When a solar wavelength conversion material (solar spectral wavelength converter) produced based on a low-cost aluminum material having an ultraviolet ray absorption spectrum and a visible light emitting spectrum is positioned between a solar cell and an encapsulant of the front surface of the solar cell on which solar light is incident, photocurrent conversion efficiency of the solar cell may be improved by inducing a down-conversion effect and an anti-reflective coating effect at the same time, thereby increasing light-generated current.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: November 21, 2023
    Assignee: HANWHA TOTAL PETROCHEMICAL CO., LTD.
    Inventors: Kise Kim, Dohoon Lee, Hosik Chang
  • Patent number: 11811355
    Abstract: The invention relates to a system and a method for mounting at least one solar panel on a substantially flat mounting surface. The system comprises thereto a base element, a support structure configured for supporting at least part of at least one solar panel, which is connected to the base element and wherein the support structure comprises a retaining element for retaining at least part of an upper edge of the solar panel and a clamping element configured for clampingly engaging at least part of a lower edge the solar panel.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: November 7, 2023
    Assignee: Esdec B.V.
    Inventors: Johannes Sander Goorman, Maarten Alexander Smit, Jan-Floris de Graaf
  • Patent number: 11804564
    Abstract: Provided is a solar cell, including: an N-type semiconductor substrate having a front surface and a rear surface opposite to the front surface; a boron diffusion layer arranged on the front surface of the N-type semiconductor substrate, a first passivation layer is provided on a surface of the boron diffusion layer, and a first electrode is provided passing through the first passivation layer to form an electrical connection with the N-type semiconductor substrate; and a phosphorus-doped polysilicon layer arranged on the rear surface of the N-type semiconductor substrate. A silicon oxide layer containing nitrogen and phosphorus is provided between the rear surface of the N-type semiconductor substrate and the phosphorus-doped polysilicon layer, a second passivation layer is provided on a surface of the phosphorus-doped polysilicon layer, and a second electrode is provided passing through the second passivation layer to form an electrical connection with the phosphorus-doped polysilicon layer.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: October 31, 2023
    Assignee: Jinko Solar Co., Ltd.
    Inventors: Jiahua Qu, Jingsheng Jin, Linan Zhang
  • Patent number: 11799049
    Abstract: A multijunction solar cell including a metamorphic layer, and particularly the design and specification of the composition, lattice constant, and band gaps of various layers above the metamorphic layer in order to achieve reduction in “bowing” of the semiconductor wafer caused by the lattice mismatch of layers associated with the metamorphic layer.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: October 24, 2023
    Assignee: SolAero Technologies Corp.
    Inventors: Zachary Bittner, John Hart, Samantha Whipple, Nathaniel Miller, Daniel Derkacs
  • Patent number: 11800728
    Abstract: Luminescent solar concentrator (L8C) of neutral coloration comprising: —at least one first sheet comprising a matrix of a transparent material and at least one first photoluminescent organic compound having an absorption interval within the range 400 nm to 550 nm, preferably within the range 420 nm to 500 mrs, and an emission interval within the range 500 nm to 650 nm, preferably within the range 520 mn to 620 nm; —at least one second sheet comprising a matrix of a transparent material and at least one second photoluminescent organic compound having an absorption interval within the range 420 nm to 650 nm, preferably within the range 480 nm to 600 nm, and an emission interval within the range 580 mn and 750 nm, preferably within the range 600 nm and 700 nm; —at least one third sheet comprising a matrix of a transparent material and at least one third, optionally photoluminescent, organic compound having an absorption interval within the range 550 nm to 750 nm, preferably within the range 570 nrn to 700 nm, an
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: October 24, 2023
    Assignee: ENI S.P.A.
    Inventors: Roberto Fusco, Liliana Gila, Luciano Caccianotti, Antonio Alfonso Proto
  • Patent number: 11793072
    Abstract: A compound of Chemical Formula 1, and a photoelectric device, an image sensor, and an electronic device including the same are disclosed: In Chemical Formula 1, each substituent is the same as defined in the detailed description.
    Type: Grant
    Filed: January 5, 2023
    Date of Patent: October 17, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jisoo Shin, Yeong Suk Choi, Katsunori Shibata, Taejin Choi, Sungyoung Yun, Ohkyu Kwon, Sangmo Kim, Hiromasa Shibuya, Gae Hwang Lee, Yong Wan Jin, Hyesung Choi, Chul Baik, Hyerim Hong
  • Patent number: 11758813
    Abstract: A thermoelectric conversion material is composed of a compound semiconductor including a plurality of base material elements, and includes: an amorphous phase; and crystal phases having an average grain size of more than or equal to 5 nm, each of the crystal phases being in a form of a grain. The plurality of base material elements include a specific base material element that causes an increase of a band gap by increasing a concentration of the specific base material element. An atomic concentration of the specific base material element included in the crystal phases with respect to a whole of the plurality of base material elements included in the crystal phases is higher than an atomic concentration of the specific base material element included in the compound semiconductor with respect to a whole of the plurality of base material elements included in the compound semiconductor.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: September 12, 2023
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., TOYOTA SCHOOL FOUNDATION
    Inventors: Kotaro Hirose, Masahiro Adachi, Takashi Matsuura, Yoshiyuki Yamamoto, Tsunehiro Takeuchi
  • Patent number: 11750150
    Abstract: There is provided an apparatus for solar energy power conversion comprising: a planar array of light concentrators distributed in a pattern; a planar array of PV cells distributed in alignment with the light concentrators; and a spectral converter that extends between the planar array of light concentrators and the planar array of PV cells, wherein the spectral converter is configured to convert incident light of a first spectral distribution from the array of light concentrators to outgoing light of a second spectral distribution for the array of PV cells.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: September 5, 2023
    Assignee: SunDensity Inc.
    Inventor: Nishikant Sonwalkar
  • Patent number: 11742440
    Abstract: The present disclosure relates to an all-back-contact photovoltaic device that includes, in order, a substrate, a first electrode having a first surface, an insulator, a second electrode having a second surface, and an active material, where the insulator and the second electrode form a cavity, the active material substantially fills the cavity and is in physical contact with the first surface and the second surface, the insulator includes a first layer and a second layer with the second layer positioned between the first layer and the second contact, and the first layer is constructed of a first material that is different than a second material used to construct the second layer.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: August 29, 2023
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Kevin Joseph Prince, Colin Andrew Wolden, Lance Michael Wheeler
  • Patent number: 11735678
    Abstract: A solar cell, and methods of fabricating said solar cell, are disclosed. The solar cell can include a first emitter region over a substrate, the first emitter region having a perimeter around a portion of the substrate. A first conductive contact is electrically coupled to the first emitter region at a location outside of the perimeter of the first emitter region.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: August 22, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: David D. Smith, Jeffrey El Cotter, David Aaron Randolph Barkhouse, Taeseok Kim
  • Patent number: 11728446
    Abstract: Embodiments of the present disclosure provide a solar cell and a solar cell module. The solar cell includes a first region and a second region, and further includes a substrate having a first surface and a second surface; a tunneling layer covering the second surface; a first emitter disposed on part of the tunneling layer in the first region; and a second emitter disposed on part of the tunneling layer in the second region and on the first emitter, a conductivity type of the second emitter being different from a conductivity type of the first emitter. The solar cell further includes a first electrode disposed in the first region and configured to electrically connect with the first emitter by penetrating through the second emitter; and a second electrode disposed in the second region and configured to electrically connect with the second emitter.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: August 15, 2023
    Assignees: Jinko Green Energy (Shanghai) Management Co., LTD., ZHEJIANG JINKO SOLAR CO., LTD.
    Inventors: Menglei Xu, Jie Yang, Xinyu Zhang, Hao Jin
  • Patent number: 11722094
    Abstract: A solar cell assembly having a flexible circuit is described. The solar cell assembly includes a solar cell having a solar-facing surface and a non-solar-facing surface, the solar cell comprising a cell corner. The solar cell assembly further includes a flexible circuit coupled to the non-solar-facing surface of the solar. The flexible circuit is substantially coextensive with the solar cell. The flexible circuit includes a flexible insulator including a plurality of edges aligned with the solar cell, a flexible corner extending past the cell corner, and a flexible tab extending from an edge of the plurality of edges. The flexible circuit includes a circuit substantially embedded in the flexible insulator. The circuit comprises a first electric contact exposed at a solar-facing side of the flexible corner, and a second electric contact exposed at a solar-facing side of the flexible tab.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: August 8, 2023
    Assignee: The Boeing Company
    Inventor: Christopher M. Fetzer
  • Patent number: 11682737
    Abstract: A method for fabricating a solar cell and the and the resulting structures, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, are described. The method can include: providing a solar cell having metal foil having first regions that are electrically connected to semiconductor regions on a substrate at a plurality of conductive contact structures, and second regions; locating a carrier sheet over the second regions; bonding the carrier sheet to the second regions; and removing the carrier sheet from the substrate to selectively remove the second regions of the metal foil.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: June 20, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Pei Hsuan Lu, Benjamin I. Hsia, David Aaron Randolph Barkhouse, Lewis C. Abra, George G. Correos, Boris Bastien
  • Patent number: 11664472
    Abstract: Metallization of semiconductor substrates using a laser beam, and the resulting structures, e.g., micro-electronic devices, semiconductor substrates and/or solar cells, solar cell circuit, solar cell strings, and solar cell arrays are described. A solar cell string can include a plurality of solar cells. The plurality of solar cells can include a substrate and a plurality of semiconductor regions disposed in or above the substrate. A plurality of conductive contact structures is electrically connected to the plurality semiconductor regions. Each conductive contact structure includes a locally deposited metal portion disposed in contact with a corresponding one of the semiconductor regions.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: May 30, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Pei Hsuan Lu, Benjamin I. Hsia, David Aaron Randolph Barkhouse, Lewis C. Abra, George G. Correos, Marc Robinson, Paul W. Loscutoff, Ryan Reagan, David Okawa, Tamir Lance, Thierry Nguyen
  • Patent number: 11659767
    Abstract: A thermoelectric element-containing package according to one aspect of the present disclosure includes a thermoelectric conversion module including: a first substrate having first and second main surfaces; a second substrate having third and fourth main surfaces; and a plurality of thermoelectric elements that are sandwiched between the first and second substrates and arranged along the second main surface and the third main surface. The thermoelectric element-containing package further includes: a frame joined to the first and second substrates so as to form a hermetically sealed space surrounding the plurality of thermoelectric elements and disposed between the first substrate and the second substrate; and a placement member that is disposed on the first main surface of the first substrate or the fourth main surface of the second substrate and to which an additional device is to be connected.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: May 23, 2023
    Assignees: NGK SPARK PLUG CO., LTD., FERROTEC MATERIAL TECHNOLOGIES CORPORATION
    Inventors: Masahiro Ogawa, Tetsuya Kato, Takayuki Hachida
  • Patent number: 11646387
    Abstract: A method of fabricating solar cell, solar laminate and/or solar module string is provided. The method may include: locating a metal foil over a plurality of semiconductor substrates; exposing the metal foil to laser beam over selected portions of the plurality of semiconductor substrates, wherein exposing the metal foil to the laser beam forms a plurality conductive contact structures having of locally deposited metal portion electrically connecting the metal foil to the semiconductor substrates at the selected portions; and selectively removing portions of the metal foil, wherein remaining portions of the metal foil extend between at least two of the plurality of semiconductor substrates.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: May 9, 2023
    Assignee: Maxeon Solar Pte. Ltd.
    Inventors: Pei Hsuan Lu, Benjamin I. Hsia, David Aaron Randolph Barkhouse, David C. Okawa, David F. Kavulak, Lewis C. Abra, George G. Correos, Richard Hamilton Sewell, Ryan Reagan, Tamir Lance, Thierry Nguyen
  • Patent number: 11641001
    Abstract: Embodiments of the present disclosure generally relate to flexible photovoltaic modules that include a multi-layered substrate. In some embodiments, the multi-layered substrate includes one or more layers that are configured to improve the elastic modulus, rigidity, or stiffness of a flexible substrate of a flexible photovoltaic module during a deposition process step at an elevated temperature that is used to form the flexible photovoltaic module. The one or more layers of the multi-layered substrate may also provide improved barrier properties that prevent environmental contaminants from affecting the performance of a formed photovoltaic module, which includes the multi-layered substrate, during normal operation.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: May 2, 2023
    Assignee: FLISOM AG
    Inventor: Julian Christoph Perrenoud
  • Patent number: 11637230
    Abstract: The purpose of the present invention is to provide a thermoelectric conversion element having a film which not only maintains sufficient adhesion even when exposed to a high temperature but also exhibits excellent oxidation resistance and crack resistance. The problem is solved by a thermoelectric conversion element including a thermoelectric conversion component, in which the thermoelectric conversion component contains magnesium silicide and/or manganese silicide and is covered with a film containing Si and Zr.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: April 25, 2023
    Assignees: Nihon Parkerizing Co., Ltd., Tokyo University of Science Foundation
    Inventors: Junichi Uchida, Yuki Haijima, Yuki Sueuchi, Tsutomu Iida
  • Patent number: 11637212
    Abstract: An apparatus includes a first processing line. The first processing line includes a cleaving station adapted for separating a solar cell into two or more solar cell pieces. The apparatus includes a second processing line. The second processing line includes a storing station adapted for storing a plurality of solar cell pieces. The second processing line includes a transportation system adapted for transporting a solar cell piece from the storing station to the first processing line.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: April 25, 2023
    Assignee: APPLIED MATERIALS ITALIA S.R.L.
    Inventors: Marco Galiazzo, Luigi De Santi