Patents Examined by Anthony M Liang
  • Patent number: 11975370
    Abstract: The present disclosure provides a pulse current assisted uncanned rolling method for titanium-TiAl composite plates, including the following specific steps: 1. preparing titanium alloy sheets; 2. preparing TiAl alloy sheets; 3. uncanned lay-up; 4. pulse current assisted hot-rolling; 5. separation and subsequent processing, thus getting the titanium-TiAl composite plates. The composite plates are of good quality on the surface without oxide layer shedding, no cracks at the edges and the ends, with uniform and fine microstructures, good bonding interface and excellent mechanical properties.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: May 7, 2024
    Assignee: Taiyuan University of Technology
    Inventors: Jianchao Han, Yi Jia, Tao Wang, Zhongkai Ren, Yuanming Liu, Dongping He, Sha Li, Miao Guo
  • Patent number: 11975385
    Abstract: A nano-structured alloy material includes a nanoparticle; a matrix phase surrounding the nanoparticle; and an alkali/alkali Earth metal to alter (i) a material property of the nanoparticle, (ii) a material property of the matrix phase, and (iii) an interaction of the nanoparticle with the matrix phase.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: May 7, 2024
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kristopher A. Darling, Billy C. Hornbuckle, Blake P. Fullenwider, Albert M. Ostlind, Anthony J. Roberts, Anit K. Giri
  • Patent number: 11972884
    Abstract: A soft magnetic alloy includes a main component of (Fe(1?(?+?))X1?X2?)(1?(a+b+c+d+e))MaBbPcSidCe. X1 is one or more of Co and Ni. X2 is one or more of Al, Mn, Ag, Zn, Sn, As, Sb, Cu, Cr, Bi, N, O, and rare earth elements. M is one or more of Nb, Hf, Zr, Ta, Mo, W, and V. 0.020?a?0.14 is satisfied. 0.020<b?0.20 is satisfied. 0?d?0.060 is satisfied. ??0 is satisfied. ??0 is satisfied. 0??+??0.50 is satisfied. c and e are within a predetermined range. The soft magnetic alloy has a nanohetero structure or a structure of Fe based nanocrystallines.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: April 30, 2024
    Assignee: TDK CORPORATION
    Inventors: Kazuhiro Yoshidome, Akihiro Harada, Hiroyuki Matsumoto, Kenji Horino, Akito Hasegawa, Kensuke Ara, Hajime Amano, Masakazu Hosono
  • Patent number: 11970750
    Abstract: There is provided a non-oriented electrical steel sheet in which, in a cross section of a base material in a sheet thickness direction, the number density N2-5 of precipitates with an equivalent circle diameter of 50 to 500 nm present in a range of 2.0 to 5.0 ?m from the surface of the base material in the sheet thickness direction is 0.30 pieces/?m2 or less, and the relationship between the number density N2-5 and the number density N0-2 of precipitates with an equivalent circle diameter of 50 to 500 nm present in a range from the surface of the base material to 2.0 ?m satisfies Formula (1): (N2-5)/(N0-2)?0.5??Formula (1).
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: April 30, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Nobusato Morishige, Takeru Ichie, Masato Yasuda, Masahide Urago, Fuminobu Murakami, Daichi Hamada, Atsushi Shibayama, Kazumi Mizukami, Daisuke Itabashi
  • Patent number: 11970762
    Abstract: A high purity gold alloy alloyed with at least two of the metals zirconium, titanium and magnesium for jewelry manufacture, containing 75-99.5% Gold; at least two of 0.01-1.5% Zirconium, 0.01-1.5% Magnesium, and 0.01-1.5% Titanium; 0-24.98% Copper; 0-24.98% Zinc; and 0-24.98% Silver by weight. The gold alloy has 75-260 Vickers hardness and specific gravity 14-19 g/cc. A gold alloy with zirconium, magnesium, and titanium has a rich yellow colour. A gold alloy with zirconium and magnesium has a greenish yellow colour. A gold alloy with zirconium and titanium has a whitish yellow colour. A gold alloy with magnesium and titanium has a pale yellow colour. The gold alloy shows low wear during polishing. The gold alloy includes 18-24 Caratage, suitable for jewelry manufacture due to its low specific gravity.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: April 30, 2024
    Inventors: Subodh Pethe, Sharad Parab
  • Patent number: 11970759
    Abstract: The seamless steel pipe according to the present disclosure includes a chemical composition consisting of, in mass %, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Al: 0.001 to 0.100%, N: 0.0500% or less, O: 0.050% or less, Ni: 5.00 to 6.50%, Cr: more than 10.00 to 13.40%, Cu: more than 1.50 to 3.50%, Mo: 1.00 to 4.00%, V: 0.01 to 1.00%, Ti: 0.050 to 0.300%, and Co: 0.010 to 0.300%, with the balance being Fe and impurities, and satisfying Formula (1), wherein a depassivation pH of an inner surface is 3.00 or less. Cr+2.0 Mo+0.5 Ni+2.0 Cu+0.5 Co?20.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: April 30, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kyohei Kanki, Masayuki Sagara, Yusaku Tomio, Daisuke Matsuo
  • Patent number: 11970749
    Abstract: Provided is a method of manufacturing a hot rolled steel sheet having excellent formability and fatigue properties, including: preparing a slab including, by weight %, 0.3 to 0.8% of carbon C, 13 to 25% of manganese (Mn), 0.1 to 1.0% of vanadium (V), 0.005 to 2.0% of silicon (Si), 0.01 to 2.5% of aluminum (Al), 0.03% or less of phosphorus (P), 0.03% or less of sulfur (S), 0.04% or less (excluding 0%) of nitrogen (N), and a remainder of iron (Fe) and inevitable impurities; heating the slab to 1050 to 1250° C.; finish rolling, the slab heated in the heating, at a temperature of not lower than a recrystallization temperature of a region having an average V concentration and not higher than a recrystallization temperature of a region having twice the average V concentration, to obtain a hot rolled steel sheet; and coiling the hot-rolled steel sheet at 50 to 700° C.
    Type: Grant
    Filed: February 17, 2023
    Date of Patent: April 30, 2024
    Assignee: POSCO CO., LTD
    Inventors: Tae-Jin Song, Jeong-Eun Kim, Chang-Sik Choi
  • Patent number: 11965223
    Abstract: A thin steel sheet has a steel structure which has a ferrite area fraction of 30% or less, a bainite area fraction of 5% or less, a martensite and tempered martensite area fraction of 70% or more, and a retained austenite area fraction of 2.0% or less and in which the ratio of the dislocation density in the range of 0 ?m to 20 ?m from a surface of the steel sheet to the dislocation density of a through-thickness central portion of the steel sheet is 90% to 110% and the average of the top 10% of the sizes of cementite grains located in a depth of up to 100 ?m from a surface of the steel sheet is 300 nm or less. The maximum camber of the steel sheet sheared to a length of 1 m in a longitudinal direction of the steel sheet is 15 mm or less.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: April 23, 2024
    Assignee: JFE Steel Corporation
    Inventors: Noriaki Kohsaka, Soshi Yoshimoto, Tomohiro Hashimukai, Takuya Hirashima
  • Patent number: 11965232
    Abstract: The seamless steel pipe according to the present disclosure includes a chemical composition consisting of, in mass %, C: 0.030% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.030% or less, S: 0.0050% or less, Al: 0.001 to 0.100%, N: 0.0500% or less, O: 0.050% or less, Ni: 3.00 to 6.50%, Cr: more than 10.00 to 13.40%, Mo: 0.50 to 4.00%, V: 0.01 to 1.00%, Ti: 0.010 to 0.300%, and Co: 0.010 to 0.300%, with the balance being Fe and impurities, and satisfying Formula (1), and a microstructure containing, in volume ratio, 80.0% or more of martensite, wherein a depassivation pH of an inner surface is 3.50 or less. Cr+2.0Mo+0.5Ni+0.5Co?16.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: April 23, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kyohei Kanki, Masayuki Sagara, Yusaku Tomio
  • Patent number: 11965225
    Abstract: A cold-rolled and heat treated steel sheet, has a composition comprising 0.1%?C?0.4%, 3.5%?Mn?8.0%, 0.1%?Si?1.5%, Al?3%, Mo?0.5%, Cr?1%, Nb?0.1%, Ti?0.1%, V?0.2%, B?0.004%, 0.002%?N?0.013%, S?0.003%, P?0.015%. The structure consists of, in surface fraction: between 8 and 50% of retained austenite, at most 80% of intercritical ferrite, the ferrite grains, if any, having an average size of at most 1.5 ?m, and at most 1% of cementite, the cementite particles having an average size lower than 50 nm, martensite and/or bainite.
    Type: Grant
    Filed: January 16, 2023
    Date of Patent: April 23, 2024
    Assignee: ARCELORMITTAL
    Inventors: Coralie Jung, Astrid Perlade, Kangying Zhu, Frédéric Kegel
  • Patent number: 11965250
    Abstract: A hot stamped steel includes a base material, a plated layer that is formed on a surface of the base material, and an oxide film that is formed on a surface of the plated layer; chemical composition of the plated layer contains 20.00 to 45.00 mass % of Al, 10.00 to 45.00 mass % of Fe, 4.50 to 15.00 mass % of Mg, 0.10 to 3.00 mass % of Si, 0.05 to 3.00 mass % of Ca, 0 to 0.50 mass % of Sb, 0 to 0.50 mass % of Pb, 0 to 1.00 mass % of Cu, 0 to 1.00 mass % of Sn, 0 to 1.00 mass % of Ti, 0 to 0.50 mass % of Sr, 0 to 1.00 mass % of Cr, 0 to 1.00 mass % of Ni, and 0 to 1.00 mass % of Mn with a remainder of Zn and impurities; and chemical composition of the oxide film contains 20.0 to 55.0 at % of Mg, 0.5 to 15.0 at % of Ca, 0 to 15.0 at % of Zn, and 0 at % or more and less than 10.0 at % of Al with a remainder of O and a total of 5.0 at % or less of impurities, and the adhesion amount of the oxide film per one surface is in a range of 0.01 to 10 g/m2.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: April 23, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takuya Mitsunobu, Kohei Tokuda, Takehiro Takahashi, Hiroshi Takebayashi
  • Patent number: 11959161
    Abstract: A copper-based alloy material including a multiphase structure containing a matrix of a ? phase and a precipitation phase of a B2-type crystal structure dispersed in the matrix, where the copper-based alloy material includes a composition containing 8.6 to 12.6% by mass of Al, 2.9 to 8.9% by mass of Mn, 3.2 to 10.0% by mass of Ni, and Cu.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: April 16, 2024
    Assignees: FURUKAWA TECHNO MATERIAL CO., LTD., TOHOKU UNIVERSITY, FURUKAWA ELECTRIC CO., LTD.
    Inventors: Sumio Kise, Fumiyoshi Yamashita, Misato Fujii, Koji Ishikawa, Ryosuke Kainuma, Toshihiro Omori, Nobuyasu Matsumoto
  • Patent number: 11959157
    Abstract: Provided is a high-Mn steel having excellent low-temperature toughness and excellent surface characteristics. A high-Mn steel comprises: a chemical composition containing, in mass %, C: 0.100 to 0.700%, Si: 0.05 to 1.00%, Mn: 20.0 to 35.0%, P: ?0.030%, S: ?0.0070%, Al: 0.010 to 0.070%, Cr: 0.50 to 5.00%, N: 0.0050 to 0.0500%, O: ?0.0050%, Ti: ?0.005%, and Nb: ?0.005%, with a balance consisting of Fe and inevitable impurities; and a microstructure having austenite as a matrix, wherein in the microstructure, a Mn concentration of a Mn-concentrated portion is 38.0% or less, and an average KAM value is 0.3 or more, yield stress is 400 MPa or more, absorbed energy vE?196 in a Charpy impact test at ?196° C. is 100 J or more, and percent brittle fracture is less than 10%.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: April 16, 2024
    Assignee: JFE STEEL CORPORATION
    Inventors: Daichi Izumi, Shigeki Kitsuya, Keiji Ueda, Koichi Nakashima
  • Patent number: 11958110
    Abstract: In an example of a method for three-dimensional printing, a first amount of a binding agent is selectively applied, based on a 3D object model, to individual build material layers of a particulate build material including metal particles to forming an intermediate structure. The binding agent and/or a void-formation agent is selectively applied, based on the 3D object model, to at least one interior layer of the individual build material layers so that a total amount of the binding agent, the void-formation agent, or both the binding agent and the void-formation agent in the at least one of the individual build material layers is greater than the first amount. This patterns an area that is to contain voids. The intermediate structure is heated to form a 3D structure including a void-containing breakable connection.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: April 16, 2024
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jason C. Hower, Mohammed S. Shaarawi, Vladek P. Kasperchik, James McKinnell, Jennifer L. Wu
  • Patent number: 11958108
    Abstract: Methods for large-scale additive manufacturing of high-strength boron nitride nanotubes (BNNT)/aluminum (Al) (e.g., reinforced Al alloy) metal matrix composites (MMCs) (BNNT/Al MMCs), as well as the BNNT/Al MMCs produced by the large-scale additive manufacturing methods, are provided. A combination of ultrasonication and spray drying techniques can produce good BNNT/Al alloy feedstock powders, which can be used in a cold spraying process.
    Type: Grant
    Filed: April 6, 2023
    Date of Patent: April 16, 2024
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Arvind Agarwal, Cheng Zhang, Tanaji Paul, Sohail Mazher Ali Khan Mohammed, Denny John
  • Patent number: 11951539
    Abstract: A method for metal jetting is disclosed. The method for metal jetting includes introducing a first gas into an outer nozzle of an ejector nozzle from a first gas source introducing an additive to the first gas from a second source, combining the additive with the first gas. The method for metal jetting also includes ejecting a droplet of molten metal printing material from the ejector nozzle. The method for metal jetting includes allowing the additive to react with the droplet of molten metal printing material to form a modified molten metal printing material.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: April 9, 2024
    Assignee: ADDITIVE TECHNOLOGIES, LLC
    Inventors: Mariusz Tadeusz Mika, Peter M. Gulvin
  • Patent number: 11951522
    Abstract: A method of forming a shaped steel object is provided. The method includes cutting a blank from an alloy composition including 0.05-0.5 wt. % carbon, 4-12 wt. % manganese, 1-8 wt. % aluminum, 0-0.4 wt. % vanadium, and a remainder balance of iron. The method also includes heating the blank until the blank is austenitized to form a heated blank, transferring the heated blank to a press, forming the heating blank into a predetermined shape to form a stamped object, and decreasing the temperature of the stamped object to a temperature between a martensite start (Ms) temperature of the alloy composition and a martensite final (Mf) temperature of the alloy composition to form a shaped steel object comprising martensite and retained austenite.
    Type: Grant
    Filed: March 20, 2023
    Date of Patent: April 9, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jiachen Pang, Qi Lu, Jianfeng Wang
  • Patent number: 11952647
    Abstract: There is provided a ferritic lightweight steel which contains 2.0 to 3.0 wt % manganese (Mn), 5.0 to 6.0 wt % aluminum (Al) and 0.1 to 0.3 wt % carbon (C) and has a tensile strength of 900 MPa to 1,108 MPa. The lightweight steel includes ferrite-austenite dual grains as a result of performing low-temperature tempering-induced partitioning (LTP) at 300° C. for 10 minutes after isothermal annealing.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: April 9, 2024
    Assignee: INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY
    Inventors: Jae Bok Seol, Hyo Ju Bae, Kwang Gyu Koh, Jung Gi Kim, Hyo Kyung Sung, Young Kook Lee
  • Patent number: 11952650
    Abstract: A steel wire which has an excellent fatigue limit when made into a spring is provided. A chemical composition of the steel wire according to the present embodiment consists of, in mass %, C: 0.53 to 0.59%, Si: 2.51 to 2.90%, Mn: 0.70 to 0.85%, P: 0.020% or less, S: 0.020% or less, Cr 1.40 to 1.70%, Mo: 0.17 to 0.53%, V: 0.23 to 0.33%, Cu: 0.050% or less, Ni: 0.050% or less, Al: 0.0050% or less, Ti: 0.050% or less, N: 0.0070% or less, Ca: 0 to 0.0050%, and Nb: 0 to 0.020%, with the balance being Fe and impurities. In the steel wire, a number density of V-based precipitates having a maximum diameter ranging from 2 to 10 nm is 500 to 8000 pieces/?m2.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: April 9, 2024
    Assignees: NIPPON STEEL CORPORATION, NIPPON STEEL SG WIRE CO., LTD.
    Inventors: Shinya Teramoto, Yutaka Neishi, Michimasa Aono, Shuji Kozawa, Satoru Mineta, Tatsuro Ochi, Shoichi Suzuki
  • Patent number: 11946123
    Abstract: Provided is a method of easily producing a non-oriented electrical steel sheet that contains substantially no Al and contains large amounts of Si and Mn and has low iron loss, comprising hot rolling a slab having a specified chemical composition to obtain a hot-rolled sheet; coiling the hot-rolled sheet; cold rolling the hot-rolled sheet once or twice with intermediate annealing being performed therebetween, to obtain a cold-rolled sheet; and subjecting the cold-rolled sheet to final annealing, wherein the hot-rolled sheet after the hot rolling is cooled at an average cooling rate from 800° C. to 650° C. of 30° C./s or more, and thereafter the coiling is performed at 650° C. or less.
    Type: Grant
    Filed: April 7, 2023
    Date of Patent: April 2, 2024
    Assignee: JFE STEEL CORPORATION
    Inventors: Masanori Uesaka, Yoshiaki Zaizen, Tomoyuki Okubo, Hiroaki Nakajima, Yoshihiko Oda