Patents Examined by Cassandra F Cox
  • Patent number: 11652475
    Abstract: A circuit includes, in part, a first transistor receiving a first clock signal at its gate, a second transistor receiving a second clock signal at its gate, a first impedance coupled to the drain terminal of the first transistor, a second impedance coupled to the drain terminal of the second transistor, a current source coupled to the source terminals of the first and second transistors, a third transistor receiving a third clock signal at its gate, a fourth transistor receiving a fourth clock signal at its gate, a fifth transistor coupling the drain terminal of the third transistor to the second impedance in response to a first control signal, a sixth transistor coupling the drain terminal of the fourth transistor to the second impedance in response to a second control signal, and a first variable current source coupled to the source terminals of the third and fourth transistors.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: May 16, 2023
    Assignee: Synopsys, Inc.
    Inventors: Srirup Bagchi, Gaurav Bhojane, Ravi Mehta
  • Patent number: 11646739
    Abstract: Systems and methods described herein are related to clock signal generation for synchronous electronic circuitry. Power management in electronic devices circuitry may be implemented by scaling the frequency multiple functional modules implemented in the synchronous electronic circuitry. The present disclosure discussed clock generators that may provide frequency scaling of clock signals for functional modules within an electronic device. Moreover, certain clock signal generators may reduce mitigate generation of large currents during frequency scaling by employing circuitry that leads to incremental frequency changes. Circuitry that allows substantially glitchless or reduced-glitch transition between clock rate frequencies are also discussed.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: May 9, 2023
    Assignee: Intel Corporation
    Inventors: Michael D. Hutton, Audrey Kertesz
  • Patent number: 11626867
    Abstract: A variable delay circuit includes at least one first delay circuit and a second delay circuit. The first delay circuit includes multiple first delay elements connected in series and is configured to output a delay signal from a first stage first delay element that is a first stage of the first delay circuit. The second delay circuit includes at least one second delay element and multiple third delay elements connected in series. The second delay circuit is configured to output a delay signal from a first stage second delay element that is a first stage of the second delay circuit. The first stage first delay element and the first stage second delay element are connected in series. A delay signal obtained by delaying an input signal received at one circuit among the first delay circuit and the second delay circuit for a predetermined time duration is output from another circuit.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: April 11, 2023
    Assignee: Socionext Inc.
    Inventor: Masanori Okinoi
  • Patent number: 11616500
    Abstract: A delay interpolator includes pull-up devices coupled between a supply rail and a node, pull-down devices coupled between the node and a ground, and a first control circuit coupled to the pull-up devices, wherein the first control circuit is configured to receive a first signal, a second signal, and a first delay code, input the first signal to a programmable number of the pull-up devices based on the first delay code, and input the second signal to remaining ones of the pull-up devices. The delay interpolator also includes a second control circuit coupled to the pull-down devices, wherein the second control circuit is configured to receive the first signal, the second signal, and a second delay code, input the first signal to a programmable number of the pull-down devices based on the second delay code, and input the second signal to remaining ones of the pull-down devices.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: March 28, 2023
    Assignee: QUALCOMM, Incorporated
    Inventor: Jeffrey Mark Hinrichs
  • Patent number: 11615259
    Abstract: The present invention relates to a generation of a signal by executing a waveform dataset comprising waveform descriptive parameters. The execution of the waveform description parameters is limited by target device information specifying one or more specific target devices and time information specifying an execution period of the waveform descriptive parameters. By providing a waveform dataset comprising not only the waveform descriptive parameters, but also further information, in particular time information for limiting the execution period of the waveform descriptive parameters, the generation of the respective waveform signal is controlled.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: March 28, 2023
    Inventor: Thomas Braunstorfinger
  • Patent number: 11611335
    Abstract: One embodiment of a duty-cycle corrector phase shift (DCCPS) circuit includes a voltage-controlled delay line circuit, a duty-cycle correct circuit, an error amplifier circuit, and DC sampler circuits. Another embodiment of a duty-cycle corrector phase shift circuit includes a digital-controlled delay line circuit, a duty-cycle correct circuit, DC sampler circuits, a comparator circuit, a counter circuit, a control circuit, and a lock detector circuit. In some instances, the DCCPS circuit provides a clock signal with a duty-cycle of approximately fifty percent (50%) and a given phase shift between an input clock signal and the output clock signal.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: March 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Wei Shuo Lin
  • Patent number: 11609597
    Abstract: An integrated circuit device, having functional circuitry driven by a clock signal, includes a first clock path for accepting an external clock signal where the first clock path includes first biasing circuitry configured to controllably pass the external clock signal, a second clock path for accepting an external frequency reference signal where the second clock path includes internal clock generation circuitry configured to generate an internal clock signal from the external frequency reference signal and second biasing circuitry configured to controllably pass the external frequency reference signal to the internal clock generation circuitry, and selector circuitry configured to select, based on user input, a clock output to drive the functional circuitry of the integrated circuit device. The clock output is selected from between (i) an output of the first clock path, and (ii) an output of the second clock path.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: March 21, 2023
    Assignee: Marvell Asia Pte Ltd
    Inventors: Li Cai, Sau Siong Chong, Chang-Feng Loi, Lawrence Tse
  • Patent number: 11606082
    Abstract: A method includes determining a phase error for a first clock signal and a second clock signal and determining an offset based on the phase error for the first clock signal and the second clock signal. The method also includes adding the offset to a phase of the first clock signal to produce a first adjusted clock signal and subtracting the offset from a phase of the second clock signal to produce a second adjusted clock signal. A phase error for the first adjusted clock signal and the second adjusted clock signal is smaller than the phase error for the first clock signal and the second clock signal.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: March 14, 2023
    Assignee: International Business Machines Corporation
    Inventors: Yang You, Chad Andrew Marquart, Glen A. Wiedemeier, Tyler Bohlke, Daniel M. Dreps
  • Patent number: 11595031
    Abstract: A circuit and a method for eliminating a spurious signal are provided. The circuit includes a phase detector, a spurious estimation and regeneration device, and a phase shifter. After an actual clock signal containing a spurious signal is obtained, the contained spurious signal is estimated based on the reference clock signal that does not contain the spurious signal. Reverse adjustment is performed on the actual clock signal based on the estimated spurious signal to eliminate the spurious signal in the actual clock signal, ensuring eliminating the generated spurious signal by performing reverse adjustment, improving the signal transmission quality, thereby solving the problem of reduced signal quality due to that the spurious signal cannot be suppressed in generation according to the conventional technology.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: February 28, 2023
    Assignee: NEWCOSEMI (BEIJING) TECHNOLOGY CO., LTD.
    Inventors: Deyi Pi, Gongbao Cheng
  • Patent number: 11588478
    Abstract: A delay control device for controlling a delay circuit includes an oscillator, a counter, and an output control circuit. The oscillator generates an internal clock signal according to an external clock signal. The counter generates an accumulative signal according to the internal clock signal. The counter is selectively reset by the external clock signal. The output control circuit generates a delay indication signal according to the accumulative signal. The delay time of the delay circuit is adjusted according to the delay indication signal.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: February 21, 2023
    Assignee: WINDBOND ELECTRONICS CORP.
    Inventor: Yen-Yu Chou
  • Patent number: 11575374
    Abstract: The present disclosure concerns a device for supplying an adjustable current configured to supply discrete values of the current belonging to different current ranges, with a pitch between two successive discrete values determined by that of said ranges to which each of the two successive discrete values belongs.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: February 7, 2023
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventor: Renald Boulestin
  • Patent number: 11575188
    Abstract: First and second paths (I,II) are connected in parallel between an input terminal (IN) and an output terminal (OUT). A high-pass filter (HPF) is provided in the first path (I). A low-pass filter (LPF) is provided in the second path (II). A switch (SW1-SW4) connects one of the high-pass filter (HPF) and the low-pass filter (LPF) to the input terminal (IN) and the output terminal (OUT) and disconnects the other. A transmission line (TL1,TL2) is provided on the first and second paths (I,II) respectively. A line length of the transmission line (TL1,TL2) is adjusted such that a resonance caused due to circuit constants of the high-pass filter (HPF) and the low-pass filter (LPF) and capacitance obtained when the switch (SW1-SW4) is OFF is shifted to a communication frequency band.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: February 7, 2023
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takao Haruna
  • Patent number: 11569805
    Abstract: The present invention provides a system including a transmitter and a receiver is disclosed. The transmitter includes a first main data path and a first main strobe path, wherein the first main data path is configured to generate a plurality of data signals, the first main strobe path is configured to generate a first strobe signal, and delay amount of the first main data path and delay amount of the first main strobe path are unbalanced. The receiver includes a second main data path and a second main strobe path, wherein the second main strobe path is configured to receive the first strobe signal to generate a plurality of second strobe signals, and the second main data path is configured to receive the plurality of data signals, and uses the plurality of second strobe signals to sample the plurality of data signals to generate a plurality of sampled signals, respectively.
    Type: Grant
    Filed: December 12, 2021
    Date of Patent: January 31, 2023
    Assignee: MEDIATEK INC.
    Inventor: Ying-Yu Hsu
  • Patent number: 11569806
    Abstract: Duty cycle adjustment circuitry includes a first stage, a second stage, and decoder circuitry. The first stage includes a first strength tuning circuit having first inverter branches, and a first fine tuning circuit having second inverter branches. The first strength tuning circuit and the first fine tuning circuit are coupled in parallel. The second stage includes a second strength tuning circuit having third inverter branches, and a second fine tuning circuit having fourth inverter branches. The second strength tuning circuit and the second fine tuning circuit are coupled in parallel. Further, the second stage is electrically coupled to the first stage. The decoder circuitry is electrically coupled to the first stage and the second stage. The decoder circuitry controls the first strength tuning circuit independently from the first fine tuning circuit to adjust the duty cycle of an input signal received by the duty cycle adjustment circuitry.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: January 31, 2023
    Assignee: Synopsys, Inc.
    Inventors: Kuan Zhou, David Da-Wei Lin, Vladimir Zlatkovic, Shefali Walia, Youssef Mamdouh El-Toukhy, Abdelrahman Alaa Gouda, Alexander A. Alexeyev
  • Patent number: 11569728
    Abstract: A circuit for controlling a switch of a power converter includes a first clock signal generator configured to generate a first clock signal and a switching signal generator configured to generate a switching signal to control the switch of the power converter based on the first clock signal. The circuit further includes error detection circuitry configured to output an error indication and a second clock signal generator configured to generate, in response to the error indication, a second clock signal that comprises an edge of a clock cycle of the second clock signal that corresponds to when the switching signal deactivates the switch of the power converter plus a time delay. The switching signal generator is configured to generate the switching signal to control the switch of the power converter further based on the second clock signal in response to the error indication being output by the error detection circuitry.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: January 31, 2023
    Assignee: Infineon Technologies AG
    Inventors: Winand Van Sloten, Filippo Boera
  • Patent number: 11563429
    Abstract: A digitally controlled delay line (DCDL) includes an input terminal, an output terminal, and a plurality of stages configured to propagate a signal along a first signal path from the input terminal to a selectable return stage of the plurality of stages, and along a second signal path from the return stage of the plurality of stages to the output terminal. Each stage of the plurality of stages includes a first inverter configured to selectively propagate the signal along the first signal path, a second inverter configured to selectively propagate the signal along the second signal path, and a third inverter configured to selectively propagate the signal from the first signal path to the second signal path. Each of the first and third inverters has a tunable selection configuration corresponding to greater than three output states.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: January 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Peng Hsieh, Chih-Chiang Chang, Yung-Chow Peng
  • Patent number: 11558055
    Abstract: A clock-gating synchronization circuit is provided. The clock-gating synchronization circuit includes a synchronization circuit and clock-gating circuit. The synchronization circuit is configured to perform a synchronization operation to convert a first control signal in a first clock domain into a second control signal in a second clock domain, transmit the second control signal to an electronic circuit, and determine whether the first control signal and the second control signal are the same to generate a first signal. The clock-gating circuit is configured to perform clock gating on the clock signal from a clock generator in the second clock domain according to the first signal to generate a gated clock signal, and transmit the gated clock signal to the electronic circuit and the synchronization circuit, wherein the synchronization operation performed by the synchronization circuit is controlled by the gated clock signal.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: January 17, 2023
    Assignee: NUVOTON TECHNOLOGY CORPORATION
    Inventor: Yung-Chi Lan
  • Patent number: 11558045
    Abstract: A method includes connecting inputs of a first plurality of interpolation branches to a first clock signal, connecting inputs of a second plurality of interpolation branches to a second clock signal, and connecting inputs of a third plurality of interpolation branches to a third clock signal. The method also includes combining outputs of the first plurality of interpolation branches, the second plurality of interpolation branches, and the third plurality of interpolation branches to produce an output clock signal and adjusting a phase of the output clock signal by connecting an input of an interpolation branch of the third plurality of interpolation branches to the second clock signal.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: January 17, 2023
    Assignee: International Business Machines Corporation
    Inventors: Yang You, Venkat Harish Nammi, Pier Andrea Francese, Chad Andrew Marquart, Glen A. Wiedemeier, Daniel M. Dreps
  • Patent number: 11558038
    Abstract: In described examples, a pulse width modulation (PWM) system includes an initiator and a receiver. The initiator includes an initiator counter and an initiator PWM signal generator. The initiator counter advances an initiator count in response to an initiator clock signal. The initiator PWM signal generator generates an initiator PWM signal in response to the initiator count. The receiver includes a receiver counter, a receiver PWM signal generator, and circuitry configured to reset the receiver count. The receiver counter advances a receiver count in response to a receiver clock signal. The receiver PWM signal generator generates a receiver PWM signal in response to the receiver count. The circuitry resets the receiver count in response to a synchronization signal and based on an offset.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: January 17, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Venkataratna Subrahmanya Bharathi Akondy Raja Raghupathi, Sam Gnana Sabapathy
  • Patent number: 11558057
    Abstract: A phase locked loop includes a pulse limiter between a phase frequency detector and a charge pump. The phase frequency detector generates and sends a clock pulse to the pulse limiter. The pulse limiter generates a first signal that indicates that the clock pulse is greater than a minimum pulse width of the phase frequency detector. The pulse limiter receives a pulse limiter buffer selection signal that selects one buffer of a plurality of buffers within the pulse limiter. The pulse limiter generates a second signal that indicates a truncated pulse width as the minimum pulse width of the phase frequency detector plus a delay period that is associated with the pulse limiter buffer selection signal. The pulse limiter truncates the clock pulse to the truncated pulse width and sends the truncated clock pulse to the charge pump.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: January 17, 2023
    Assignee: International Business Machines Corporation
    Inventors: John Borkenhagen, Grant P. Kesselring, James Strom, Christopher Steffen