Patents Examined by Christina A Riddle
  • Patent number: 11506786
    Abstract: Systems and methods herein provide for Laser Detection and Ranging (Lidar). One Lidar system includes a laser operable to generate laser light. The system also includes a transmitter operable to rotate at a first rate, and to transmit the laser light along a first path from the Lidar system to a target. The system also includes a receiver operable to rotate at the first rate, and to receive at least a portion of the laser light along a second path from the target. The first and second paths are different. The system also includes a processor operable to calculate a range and an angle to the target using an angular displacement between the second path and the receiver that arises from the first rate of rotation for the transmitter and the receiver.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: November 22, 2022
    Assignee: Arete Associates
    Inventor: Paul B. Lundquist
  • Patent number: 11506986
    Abstract: In accordance with some embodiments, a lithography method in semiconductor manufacturing is provided. The lithography method includes transmitting a main pulse laser to a zone of excitation through a first optic assembly. The lithography method further includes supplying a coolant to the first optic assembly and detecting a temperature of the coolant with a use of at least one sensor. The lithography method also includes adjusting a heat transfer rate between the coolant and the first optic assembly based on the temperature of the first optic assembly. In addition, the lithography method includes generating a droplet of a target material into the zone of excitation. The lithography method further includes exciting the droplet of the target material into plasma with the main pulse laser in the zone of excitation.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chi Yang, Yen-Shuo Su, Jui-Pin Wu, Li-Jui Chen
  • Patent number: 11493851
    Abstract: A method includes exposing number of fields on a substrate, obtaining data about a field and correcting exposure of the field in subsequent exposures. The method includes defining one or more sub-fields of the field based on the obtained data. Data relating to each sub-field is processed to produce sub-field correction information. A subsequent exposure of the one or more sub-fields is corrected using the sub-field correction information. By controlling a lithographic apparatus by reference to data of a particular sub-field within a field, overlay error can be reduced or minimized for a critical feature, rather than being averaged over the whole field. By controlling a lithographic apparatus with reference to a sub-field rather than only the whole field, a residual error can be reduced in each sub-field.
    Type: Grant
    Filed: September 23, 2021
    Date of Patent: November 8, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Hakki Ergün Cekli, Xing Lan Liu, Stefan Cornelis Theodorus Van Der Sanden, Richard Johannes Franciscus Van Haren
  • Patent number: 11480883
    Abstract: The invention relates to a method for operating a machine for microlithography which has a multiplicity of machine components. According to one aspect, malfunctions of these machine components that occur during the operation of the machine are each describable by a symptom, wherein the method includes the following steps: creating a database in which a cause is in each case assigned to different combinations of these symptoms, automatically recording the symptoms occurring within a predetermined time interval when a problem occurs during the operation of the machine and automatically assigning a cause to the problem on the basis of the recorded symptoms and the database.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: October 25, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Kamp-Froese, Dietmar Schnier
  • Patent number: 11467507
    Abstract: A radiation system comprising a radiation source and a radiation conditioning apparatus, wherein the radiation source is configured to provide a radiation beam with wavelengths which extend from ultraviolet to infrared, and wherein the radiation conditioning apparatus is configured to separate the radiation beam into at least two beam portions and is further configured to condition the at least two beam portions differently.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: October 11, 2022
    Assignee: ASML Netherlands B.V.
    Inventor: Johannes Jacobus Matheus Baselmans
  • Patent number: 11460779
    Abstract: A gamma ray generator includes a plate, a plurality of holes and a plurality of gamma ray sources. The plate is configured to rotate along a rotational axis. The holes are disposed in the plate, and the holes are arranged in a matrix. The gamma ray sources are respectively placed in the holes.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: October 4, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: You-Hua Chou, Kuo-Sheng Chuang
  • Patent number: 11460782
    Abstract: A method for reducing apparatus performance variation. The method includes obtaining (i) a reference performance (e.g., CD) of a reference apparatus (e.g., a reference scanner), (ii) a set of initial leading degrees of freedom selected from a plurality of degrees of freedom of a plurality of pupil facet mirrors of an apparatus (e.g., to be matched scanner) that is selected to reproduce the reference performance, and (iii) exposure data related to one or more parameters (e.g., CD, overlay, focus, etc.) of the patterning process indicating a performance of the apparatus based on the set of initial leading degrees of freedom; and determining a matching pupil of the apparatus based on the set of initial leading degrees of freedom and the exposure data such that the matching pupil reduces a difference between the performance of the apparatus and the reference performance.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: October 4, 2022
    Assignee: ASML Netherlands B.V.
    Inventor: Anton Bernhard Van Oosten
  • Patent number: 11448957
    Abstract: A pellicle transfer apparatus includes; a base including supporting a target plate, a pellicle and a flexible plate sequentially stacked on the base, and a roller unit laterally movable in a first direction across the base and including a lower roller extending in a second direction intersecting the first direction, and an upper roller above the lower roller and extending in the second direction, wherein the lower roller compresses the flexible plate while the roller unit laterally moves in the first direction across the base to bond the pellicle to the target plate, as the pellicle is separated from the flexible plate, and the flexible plate moves upward to wrap around the lower roller, and the upper roller contacts the flexible plate as it wraps around the lower roller.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: September 20, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mun Ja Kim, Changyoung Jeong
  • Patent number: 11448969
    Abstract: An illumination optical system of the present invention includes a first lens array FE including a plurality of lens cells dividing a light flux emitted from a light source into a plurality of light fluxes, a second lens array MLAi including lens cells on which spot lights exiting from the lens cells included in the first lens array FE are condensed, and a first optical member IL3 imaging the spot light, which has been condensed on the lens cell included in the second lens array MLAi, on one of optical modulation elements constituting an optical modulation unit.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: September 20, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Michio Kono
  • Patent number: 11435670
    Abstract: A method of enhancing a layout pattern includes determining a vector transmission cross coefficient (vector-TCC) operator of an optical system of a lithographic system based on an illumination source of the optical system and an exit pupil of the optical system of the lithographic system. The method also includes performing an optical proximity correction (OPC) operation of a layout pattern of a photo mask to generate an OPC corrected layout pattern. The OPC operation uses the vector-TCC operator to determine a projected pattern of the layout pattern of the photo mask on a wafer. The method includes producing the OPC corrected layout pattern on a mask blank to create a photo mask.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kenneth Lik Kin Ho, Chien-Jen Lai, Kenji Yamazoe, Xin Zhou, Danping Peng
  • Patent number: 11428892
    Abstract: An optical apparatus may include a housing having an opened front face, an optical unit freely movable into and out of an internal space of the housing through the front face, and a positioning portion disposed on a back side of the optical unit in the internal space. A base plate of the optical unit may include first and second convex portions disposed on a base end face of the base plate. The second convex portion may be disposed at a position different from the first convex portion in a width direction of the base plate. The positioning portion may include a V block having a V groove shape at a part contacting the first convex portion, and a flat block having a flat surface shape at a part contacting the second convex portion. The optical unit may be positioned in the internal space through the contact.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: August 30, 2022
    Assignee: Gigaphoton Inc.
    Inventors: Hiroshi Someya, Yukio Watanabe
  • Patent number: 11422474
    Abstract: The present application provides a dynamic illumination method based on a scan exposure machine, providing a mask used for exposure and a GDS file corresponding to the mask; dividing pattern information on the mask into n areas with the same width along the direction of movement of the mask during the exposure; performing SMO computation on the pattern information in the n areas, so as to generate n SMO files corresponding to the n areas respectively; performing combinatorial optimization on the n SMO files to obtain a DSMO file; generating a driver of a light source reflector array according to the DSMO file, the illumination; and controlling a reflector array of an exposure machine by calling the driver of the light source reflector array. The DSMO method is performed in each exposure slit area, so as to improve the illumination optimization for a pattern.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: August 23, 2022
    Assignee: Shanghai Huali Integrated Circuit Corporation
    Inventors: Yuyang Bian, Lulu Lai, Xiaobo Guo, Cong Zhang
  • Patent number: 11415895
    Abstract: An arrangement of a microlithographic optical imaging device includes first and second supporting structures. The first supporting structure supports at least one optical element of the imaging device via an active relative situation control device of a control device. The first supporting structure supports the second supporting structure via supporting spring devices of a vibration decoupling device. The supporting spring devices act kinematically parallel to one another. Each supporting spring device defines a supporting force direction and a supporting length along the supporting force direction. The second supporting structure supports a measuring device of the control device. The measuring device is connected to the relative situation control device. The measuring device outputs to the relative situation control device measurement information representative for the position and/or the orientation of the at least one optical element in relation to a reference in at least one degree of freedom in space.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: August 16, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Marwène Nefzi, Ralf Zweering, Toralf Gruner
  • Patent number: 11415897
    Abstract: Calibrating stochastic signals in compact modeling is provided by obtaining data of process variations in producing a resist mask; calibrating a continuous compact model of the resist mask based on the data; evaluating the continuous compact model against a stochastic compact model that is based on the data; choosing a functional description of an edge location distribution for the stochastic compact model; mapping image parameters from the evaluation to edge distribution parameters according to the functional description; determining an edge location range for the stochastic compact model based on scaled measurements from the image parameters; calibrating a threshold for the resist mask and updating parameters of the stochastic compact model to reduce a difference between the data and a modeled Line Edge Roughness (LER) value; and outputting the stochastic compact model.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: August 16, 2022
    Assignee: Synopsys, Inc.
    Inventors: Zachary Adam Levinson, Yudhishthir Prasad Kandel, Ulrich Welling
  • Patent number: 11415892
    Abstract: A method for producing a reflecting optical element for a projection exposure apparatus (1). The element has a substrate (30) with a substrate surface (31), a protection layer (38) and a layer partial system (39) suitable for the EUV wavelength range. The method includes: (a) measuring the substrate surface (31), (b) irradiating the substrate (30) with electrons (36), and (c) tempering the substrate (30). Furthermore, an associated reflective optical element for the EUV wavelength range, a projection lens with a mirror (18, 19, 20) as reflective optical element, and a projection exposure apparatus (1) including such a projection lens.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: August 16, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Matthias Kaes, Steffen Bezold, Matthias Manger, Christoph Petri, Pavel Alexeev, Walter Pauls
  • Patent number: 11392043
    Abstract: A method of determining an estimated intensity of radiation scattered by a target illuminated by a radiation source, has the following steps: obtaining and training (402) a library REFLIB of wavelength-dependent reflectivity as a function of the wavelength, target structural parameters and angle of incidence R(?,?,x,y); determining (408) a wide-band library (W-BLIB) of integrals of wavelength-dependent reflectivity R of the target in a Jones framework over a range of radiation source wavelengths ?; training (TRN) (410) the wide-band library; and determining (412), using the trained wide-band library, an estimated intensity (INT) of radiation scattered by the target illuminated by the radiation source.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: July 19, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Seyed Iman Mossavat, Remco Dirks, Hendrik Jan Hidde Smilde
  • Patent number: 11392044
    Abstract: A method, system and program for determining a position of a feature referenced to a substrate. The method includes measuring a position of the feature, receiving an intended placement of the feature and determining an estimate of a placement error based on knowledge of a relative position of a first reference feature referenced to a first layer on a substrate with respect to a second reference feature referenced to a second layer on a substrate. The updated position may be used to position the layer of the substrate having the feature, or another layer of the substrate, or another layer of another substrate.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: July 19, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Ralph Timotheus Huijgen, Marc Jurian Kea, Marcel Theodorus Maria Van Kessel, Masashi Ishibashi, Chi-Hsiang Fan, Hakki Ergün Cekli, Youping Zhang, Maurits Van Der Schaar, Liping Ren
  • Patent number: 11392040
    Abstract: A photolithography system utilizes tin droplets to generate extreme ultraviolet radiation for photolithography. The photolithography system irradiates the droplets with a laser. The droplets become a plasma and emit extreme ultraviolet radiation. The photolithography system senses contamination of a collector mirror by the tin droplets and adjusts the flow of a buffer fluid to reduce the contamination.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: July 19, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tai-Yu Chen, Sagar Deepak Khivsara, Kuo-An Liu, Chieh Hsieh, Shang-Chieh Chien, Gwan-Sin Chang, Kai Tak Lam, Li-Jui Chen, Heng-Hsin Liu, Chung-Wei Wu, Zhiqiang Wu
  • Patent number: 11392048
    Abstract: A liquid crystal exposure apparatus that irradiates a substrate held by a substrate holder which moves along an XY plane with an illumination light via an optical system while the substrate holder moves in the X-axis direction, has; a scale measured based on movement of the substrate holder in the X-axis direction, heads that measure the scale while relatively moving in the X-axis direction with respect to the scale, a plurality of scales arranged at mutually different positions in the X-axis direction measured based on movement of the substrate holder in the Y-axis direction, and a plurality of heads provided for each scale that measures the scales while relatively moving in the Y-axis direction with respect to the scales based on movement of the substrate in the Y-axis direction.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: July 19, 2022
    Assignee: NIKON CORPORATION
    Inventor: Akinori Shirato
  • Patent number: 11385554
    Abstract: Disclosed is a method of determining a characteristic of interest, in particular focus, relating to a structure on a substrate formed by a lithographic process, and an associated patterning device and lithographic system. The method comprises forming a modified substrate feature on the substrate using a corresponding modified reticle feature on a patterning device, the modified substrate feature being formed for a primary function other than metrology, more specifically for providing a support for a vertically integrated structure. The modified reticle feature is such that said modified substrate feature is formed with a geometry dependent on the characteristic of interest during formation. The modified substrate feature can be measured to determine said characteristic of interest.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: July 12, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Miguel Garcia Granda, Steven Erik Steen, Eric Jos Anton Brouwer, Bart Peter Bert Segers, Pierre-Yves Jerome Yvan Guittet, Frank Staals, Paulus Jacobus Maria Van Adrichem