Patents Examined by Didarul Mazumder
  • Patent number: 11658033
    Abstract: Some embodiments include an integrated assembly having a first semiconductor structure containing heavily-doped silicon, a germanium-containing interface material over the first semiconductor structure, and a second semiconductor structure over the germanium-containing interface material. The second semiconductor structure has a heavily-doped lower region adjacent the germanium-containing interface material and has a lightly-doped upper region above the heavily-doped lower region. The lightly-doped upper region and heavily-doped lower region are majority doped to a same dopant type, and join to one another along a boundary region. Some embodiments include an integrated assembly having germanium oxide between a first silicon-containing structure and a second silicon-containing structure. Some embodiments include methods of forming assemblies.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: May 23, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Yushi Hu, Shu Qin
  • Patent number: 11652068
    Abstract: A vertical memory device including: a circuit pattern on a first substrate; an insulating interlayer on the first substrate, the insulating interlayer covering the circuit pattern; a bending prevention layer on the insulating interlayer, the bending prevention layer extending in a first direction substantially parallel to an upper surface of the first substrate; a second substrate on the bending prevention layer; gate electrodes spaced apart from each other in a second direction on the second substrate, the second direction being substantially perpendicular to the upper surface of the first substrate; and a channel extending through the gate electrodes in the second direction.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: May 16, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Sunil Shim
  • Patent number: 11652058
    Abstract: Various embodiments of the present disclosure are directed towards an integrated circuit (IC) chip comprising a semiconductor device that is inverted and that overlies a dielectric region inset into a top of a semiconductor substrate. An interconnect structure overlies the semiconductor substrate and the dielectric region and further comprises an intermetal dielectric (IMD) layer. The IMD layer is bonded to the top of the semiconductor substrate and accommodates a pad. A semiconductor layer overlies the interconnect structure, and the semiconductor device is in the semiconductor layer, between the semiconductor layer and the interconnect structure. The semiconductor device comprises a first source/drain electrode overlying the dielectric region and further overlying and electrically coupled to the pad. The dielectric region reduces substrate capacitance to decrease substrate power loss and may, for example, be a cavity or a dielectric layer. A contact extends through the semiconductor layer to the pad.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: May 16, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Xin-Hua Huang, Chung-Yi Yu, Kuei-Ming Chen
  • Patent number: 11653512
    Abstract: According to principals as disclosed herein an organic, light emitting diode assembly is provided having a first electrode. An electron injection layer is adjacent to the first electrode. A first electron transport layer composed of inorganic material is adjacent to the electron injection layer. A second electron transport layer composed of organic material is adjacent to the first electron transport layer and in contact with an organic light emitting material layer. The organic light emitting material layer is in direct, abutting contact with the second electron transport layer. A hole transport layer is adjacent to the organic light emitting material layer and a second electrode is adjacent to the hole transport layer.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 16, 2023
    Assignee: LG Display Co., Ltd.
    Inventors: Seung-Jae Lee, Jong-Kwan Bin, Na-Yeon Lee
  • Patent number: 11646283
    Abstract: A first metal layer can be deposited over first dielectric material layers of a first substrate, and can be patterned into first bonding pads. A first low-k material layer can be formed over the first bonding pads. The first low-k material layer includes a low-k dielectric material such as a MOF dielectric material or organosilicate glass. A second semiconductor die including second bonding pads can be provided. The first bonding pads are bonded to the second bonding pads to form a bonded assembly.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: May 9, 2023
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Lin Hou, Peter Rabkin, Masaaki Higashitani, Ramy Nashed Bassely Said
  • Patent number: 11640949
    Abstract: A bonded semiconductor structure includes a first device wafer and a second device wafer. The first device includes a first dielectric layer, a first bonding pad disposed in the first dielectric layer, and a first bonding layer on the first dielectric layer. The second device wafer includes a second dielectric layer, a second bonding layer on the second dielectric layer, and a second bonding pad disposed in the second dielectric layer and extending through the second bonding layer and at least a portion of the first bonding layer. A conductive bonding interface between the first bonding pad and the second bonding pad and a dielectric bonding interface between the first bonding layer and the second bonding layer include a step-height.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: May 2, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Sung Chiang, Chia-Wei Liu, Yu-Ruei Chen, Yu-Hsiang Lin
  • Patent number: 11640928
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor structure including a device layer having a front-side surface opposite a back-side surface. A first heat dispersion layer is disposed along the back-side surface of the device layer. A second heat dispersion layer underlies the front-side surface of the device layer. The second heat dispersion layer has a thermal conductivity lower than a thermal conductivity of the first heat dispersion layer.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: May 2, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Yen Huang, Shao-Kuan Lee, Shau-Lin Shue, Hsiao-Kang Chang, Cherng-Shiaw Tsai
  • Patent number: 11640944
    Abstract: A semiconductor device has a shielding layer over a semiconductor package. A plurality of slot lines define a location to form a slot in the shielding layer. The slot is formed in the shielding layer by cutting along the slot lines with a laser controlled by a scanner to read the slot lines. The slot lines include a left boundary slot line and right boundary slot line. The slot can be cut in the shielding layer by performing an edge cut along the slot lines, and performing a peel back to form the slot in the shielding layer. Alternatively, the slot can be cut in the shielding layer by performing a first cut in a first direction along the slot lines, and performing a second cut in a second direction opposite the first direction along the slot lines to form the slot in the shielding layer.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: May 2, 2023
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: ChangOh Kim, JinHee Jung
  • Patent number: 11637117
    Abstract: A semiconductor device includes; a memory stack disposed on a substrate and including a lower gate electrode, an upper gate stack including a string selection line, a vertically extending memory gate contact disposed on the lower gate electrode, and a vertically extending selection line stud disposed on the string selection line. The string selection line includes a material different from that of the lower gate electrode, and the selection line stud includes a material different from that of the memory gate contact.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: April 25, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyojoon Ryu, Kwanyong Kim, Seogoo Kang, Sunil Shim, Wonseok Cho, Jeehon Han
  • Patent number: 11637071
    Abstract: A package structure, including a conductive element, multiple dies, a dielectric body, a circuit layer and a patterned insulating layer, is provided. The multiple dies are disposed on the conductive element. A portion of the conductive element surrounds the multiple dies. The dielectric body covers the multiple dies. The circuit layer is disposed on the dielectric body. The circuit layer is electrically connected to the multiple dies. The patterned insulating layer covers the circuit layer. A portion of the patterned insulating layer is disposed between the dies that are adjacent. A manufacturing method of a package structure is also provided.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: April 25, 2023
    Assignee: Powertech Technology Inc.
    Inventors: Shang-Yu Chang Chien, Nan-Chun Lin, Hung-Hsin Hsu
  • Patent number: 11638380
    Abstract: An illumination apparatus including a transparent substrate, an opposite substrate and an electroluminescence structure disposed between the transparent substrate and the opposite substrate is provided. The transparent substrate has a first region and a second region adjacent to the first region. The electroluminescence structure is disposed on the transparent substrate. The electroluminescence structure includes a first electrode disposed in the first region, an optical adjusting layer disposed in the second region, an organic electroluminescence layer disposed above the first electrode and the optical adjusting layer and a common electrode disposed above the organic electroluminescence layer. The optical adjusting layer is disposed between the organic electroluminescence layer and the transparent substrate.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: April 25, 2023
    Assignee: Au Optronics Corporation
    Inventors: Hsin-Hui Wu, Kuan-Heng Lin, Meng-Ting Lee
  • Patent number: 11631647
    Abstract: In one embodiment, an integrated device package is disclosed. The integrated device package can comprise a carrier an a molding compound over a portion of an upper surface of the carrier. The integrated device package can comprise an integrated device die mounted to the carrier and at least partially embedded in the molding compound, the integrated device die comprising active circuitry. The integrated device package can comprise a stress compensation element mounted to the carrier and at least partially embedded in the molding compound, the stress compensation element spaced apart from the integrated device die, the stress compensation element comprising a dummy stress compensation element devoid of active circuitry. At least one of the stress compensation element and the integrated device die can be directly bonded to the carrier without an adhesive.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: April 18, 2023
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventor: Belgacem Haba
  • Patent number: 11631615
    Abstract: A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, each of the tiers individually comprising a conductive structure and an insulative structure, strings of memory cells vertically extending through the stack structure, the strings of memory cells comprising a channel material vertically extending through the stack structure, another stack structure vertically overlying the stack structure and comprising alternating levels of other conductive structures and other insulative structures, the other stack structure comprising pillars vertically overlying the strings of memory cells, each pillar comprising an other channel material in electrical communication with the channel material of the strings of memory cells, and conductive contact structures vertically overlying the other stack structure, each conductive contact structure comprising an electrically conductive contact at least partially extending into the pillars and
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: April 18, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Yi Hu, Kar Wui Thong
  • Patent number: 11631687
    Abstract: A semiconductor memory device according to an embodiment includes a base, a first conductor, a second conductor, a first pillar, a first insulating member, and a first contact. The first conductor is provided in a first layer above the base. The second conductor is provided above the first conductor. The first pillar includes a first portion and a second portion formed by different bodies. The first portion of the first pillar is provided to penetrate the first conductor. The second portion of the first pillar is provided to penetrate the second conductor. The first insulating member is provided at least in the first layer. The first contact is contacting the second conductor above the first insulating member.
    Type: Grant
    Filed: February 21, 2020
    Date of Patent: April 18, 2023
    Assignee: Kioxia Corporation
    Inventors: Yusaku Suzuki, Kazuhiro Nojima, Atsuko Aiba
  • Patent number: 11626416
    Abstract: Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A sacrificial layer above a second semiconductor layer at a first side of a substrate and a dielectric stack on the sacrificial layer are subsequently formed. A channel structure extending vertically through the dielectric stack and the sacrificial layer into the second semiconductor layer is formed. The sacrificial layer is replaced with a first semiconductor layer in contact with the second semiconductor layer. The dielectric stack is replaced with a memory stack, such that the channel structure extends vertically through the memory stack and the first semiconductor layer into the second semiconductor layer. A source contact is formed at a second side opposite to the first side of the substrate to be in contact with the second semiconductor layer.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: April 11, 2023
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Kun Zhang, Linchun Wu, Wenxi Zhou, Zhiliang Xia, Zongliang Huo
  • Patent number: 11626508
    Abstract: A fin field effect transistor (FinFET) includes a fin extending from a substrate, where the fin includes a lower region, a mid region, and an upper region, the upper region having sidewalls that extend laterally beyond sidewalls of the mid region. The FinFET also includes a gate stack disposed over a channel region of the fin, the gate stack including a gate dielectric, a gate electrode, and a gate spacer on either side of the gate stack. A dielectric material is included that surrounds the lower region and the first interface. A fin spacer is included which is disposed on the sidewalls of the mid region, the fin spacer tapering from a top surface of the dielectric material to the second interface, where the fin spacer is a distinct layer from the gate spacers. The upper region may include epitaxial source/drain material.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: April 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Yang Lee, Chih-Shan Chen
  • Patent number: 11626549
    Abstract: A micro light-emitting device display apparatus includes a circuit substrate, at least one micro light-emitting device, and at least one conductive bump. The circuit substrate includes at least one pad. The micro light-emitting device is disposed on the circuit substrate and includes at least one electrode. At least one of the pad and the electrode has at least one closed opening. The conductive bump is disposed between the circuit substrate and the micro light-emitting device. The conductive bump extends into the closed opening and defines at least one void with the closed opening. The electrode of the micro light-emitting device is electrically connected to the pad of the circuit substrate with the conductive bump.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: April 11, 2023
    Assignee: PlayNitride Display Co., Ltd.
    Inventors: Yi-Ching Chen, Yi-Chun Shih, Pei-Hsin Chen
  • Patent number: 11621356
    Abstract: A thin-film transistor, a display device including a thin-film transistor, and a method of manufacturing a thin-film transistor are provided. A thin-film transistor includes: a base substrate, a semiconductor layer on the base substrate, the semiconductor layer including: a first oxide semiconductor layer, and a second oxide semiconductor layer on the first oxide semiconductor layer, the second oxide semiconductor layer having a Hall mobility smaller than a Hall mobility of the first oxide semiconductor layer, and a gate electrode spaced apart from the semiconductor layer and partially overlapping the semiconductor layer, wherein a concentration of gallium (Ga) in the second oxide semiconductor layer is higher than a concentration of gallium (Ga) in the first oxide semiconductor layer.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: April 4, 2023
    Assignee: LG Display Co., Ltd.
    Inventors: SeHee Park, JungSeok Seo, PilSang Yun, Jeyong Jeon, Jaeyoon Park, ChanYong Jeong
  • Patent number: 11621250
    Abstract: A semiconductor package may include first and second substrates, which are vertically stacked, a semiconductor device layer on a bottom surface of the second substrate to face a top surface of the first substrate, upper chip pads and an upper dummy pad on the top surface of the first substrate, penetration electrodes, which each penetrate the first substrate and are connected to separate, respective upper chip pads, lower chip pads on a bottom surface of the semiconductor device layer and electrically connected to separate, respective upper chip pads, and a lower dummy pad on the bottom surface of the semiconductor device layer and electrically isolated from the upper dummy pad. A distance between the upper and lower dummy pads in a horizontal direction that is parallel to the first substrate may be smaller than a diameter of the lower dummy pad.
    Type: Grant
    Filed: January 10, 2022
    Date of Patent: April 4, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joonho Jun, Un-Byoung Kang, Sunkyoung Seo, Jongho Lee, Young Kun Jee
  • Patent number: 11621395
    Abstract: A memory apparatus includes an interconnect in a first dielectric above a substrate and a structure above the interconnect, where the structure includes a diffusion barrier material and covers the interconnect. The memory apparatus further includes a resistive random-access memory (RRAM) device coupled to the interconnect. The RRAM device includes a first electrode on a portion of the structure, a stoichiometric layer having a metal and oxygen on the first electrode, a non-stoichiometric layer including the metal and oxygen on the stoichiometric layer. A second electrode including a barrier material is on the non-stoichiometric layer. In some embodiments, the RRAM device further includes a third electrode on the second electrode. To prevent uncontrolled oxidation during a fabrication process a spacer may be directly adjacent to the RRAM device, where the spacer includes a second dielectric.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: April 4, 2023
    Assignee: Intel Corporation
    Inventors: Nathan Strutt, Albert Chen, Pedro Quintero, Oleg Golonzka