Patents Examined by Eduardo A. Rodela
  • Patent number: 11848246
    Abstract: In an embodiment, a device includes: an interposer; a first integrated circuit device attached to the interposer; a second integrated circuit device attached to the interposer adjacent the first integrated circuit device; a heat dissipation die on the second integrated circuit device; and an encapsulant around the heat dissipation die, the second integrated circuit device, and the first integrated circuit device, a top surface of the encapsulant being coplanar with a top surface of the heat dissipation die and a top surface of the first integrated circuit device.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsien-Wei Chen, Ming-Fa Chen, Sung-Feng Yeh
  • Patent number: 11837509
    Abstract: A method of packaging the silicon photonics wafer for fabricating custom optical-electrical modules includes fabricating a wafer with multiple dies of silicon photonics circuits based on custom design and conducting electrical and optical tests of the silicon photonics circuits in wafer level. The method further includes preparing the wafer for next point of use. Additionally, the method includes performing post-wafer processing on the wafer received at the next point of use. The method further includes conducting post-process electrical tests of the silicon photonics circuits in wafer level. Furthermore, the method includes preparing the wafer with known-good-dies or a known-good-wafer identified for custom use. Moreover, the method includes performing custom process on the know good dies.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: December 5, 2023
    Assignee: MARVELL ASIA PTE LTD
    Inventors: Hsu-Feng Chou, Keith Nellis, Loi Nguyen
  • Patent number: 11830932
    Abstract: A laterally diffused metal oxide semiconductor structure can include: a base layer; a source region and a drain region located in the base layer; first dielectric layer located on a top surface of the base layer and adjacent to the source region; a voltage withstanding layer located on the top surface of the base layer and located between the first dielectric layer and the drain region; a first conductor at least partially located on the first dielectric layer; and a second conductor at least partially located on the voltage withstanding layer, where the first and second conductors are spatially isolated, and a juncture region of the first dielectric layer and the voltage withstanding layer is covered by one of the first and second conductors.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: November 28, 2023
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Budong You, Hui Yu, Meng Wang, Yicheng Du, Chuan Peng, Xianguo Huang
  • Patent number: 11830954
    Abstract: Microstructures of micro and/or nano holes on one or more surfaces enhance photodetector optical sensitivity. Arrangements such as a CMOS Image Sensor (CIS) as an imaging LIDAR using a high speed photodetector array wafer of Si, Ge, a Ge alloy on SI and/or Si on Ge on Si, and a wafer of CMOS Logic Processor (CLP) ib Si fi signal amplification, processing and/or transmission can be stacked for electrical interaction. The wafers can be fabricated separately and then stacked or can be regions of the same monolithic chip. The image can be a time-of-flight image. Bayer arrays can be enhanced with microstructure holes. Pixels can be photodiodes, avalanche photodiodes, single photon avalanche photodiodes and phototransistors on the same array and can be Ge or Si pixels. The array can be of high speed photodetectors with data rates of 56 Gigabits per second, Gbps, or more per photodetector.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: November 28, 2023
    Assignee: W&WSens Devices Inc.
    Inventors: Shih-Yuan Wang, Shih-Ping Wang
  • Patent number: 11817454
    Abstract: Described examples include a resistor having a substrate having a non-conductive surface and a patterned polysilicon layer on the non-conductive surface, the patterned polysilicon layer including polycrystalline silicon wherein at least 90% of the grains in the polycrystalline silicon are 30 nm or smaller. The resistor also has a first terminal in conductive contact with the patterned polysilicon layer and a second terminal in conductive contact with the polysilicon layer and spaced from the first contact.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: November 14, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Yanbiao Pan, Robert Martin Higgins, Bhaskar Srinivasan, Pushpa Mahalingam
  • Patent number: 11813688
    Abstract: Disclosed are a laser bonding apparatus and a laser bonding method capable of bonding an electronic component to a three-dimensional structure having a regular or irregular shape in a curved portion such as an automobile tail lamp or a headlamp. The laser bonding apparatus and method for a three-dimensional structure may prevent misalignment and poor bonding of the electronic component with respect to the three-dimensional structure.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: November 14, 2023
    Assignee: LASERSSEL CO., LTD.
    Inventors: Jae Joon Choi, Byung Rock Kim
  • Patent number: 11804519
    Abstract: A crystalline multilayer structure having a high-quality crystalline layer and a semiconductor device employing such a crystalline multilayer structure are provided. A crystalline multilayer structure, including a first crystalline layer having a first crystal, and a second crystalline layer stacked on the first crystalline layer and having a second crystal, wherein the first crystal includes polycrystalline ?-Ga2O3 and the second crystal is a single crystal of a crystalline oxide.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: October 31, 2023
    Assignees: FLOSFIA INC., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Yuichi Oshima, Katsuaki Kawara
  • Patent number: 11804553
    Abstract: A transition metal dichalcogenide transistor, comprising: a gate, a gate dielectric layer and a channel layer from bottom to top, a source/drain region are located on both the sides of the gate dielectric layer, wherein, in a plane paralleled to the channel layer, the length of the channel layer in each direction is greater than the length of the gate dielectric layer, and the length of the gate dielectric layer in each direction is greater than or equal to the length of the gate; wherein, the source/drain region are a first transition metal dichalcogenide with metallic properties, and the channel layer is a second transition metal dichalcogenide with semiconductor properties.
    Type: Grant
    Filed: May 5, 2019
    Date of Patent: October 31, 2023
    Assignee: SHANGHAI IC R&D CENTER CO., LTD
    Inventors: Min Zhong, Shoumian Chen
  • Patent number: 11799442
    Abstract: A manufacturing method of a mounting structure, the method including: a step of preparing a mounting member including a first circuit member and a plurality of second circuit members placed on the first circuit member, the mounting member having a space between the first circuit member and the second circuit member; a step of preparing a laminate sheet including a first thermal-conductive layer and a second thermal-conductive layer, the first thermal-conductive layer disposed at least on one outermost side; a disposing step of disposing the laminate sheet on the mounting member such that the first thermal-conductive layer faces the second circuit members; and a sealing step of pressing the laminate sheet against the first circuit member and heating the laminate sheet, to seal the second circuit members so as to maintain the space, and to cure the laminate sheet.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 24, 2023
    Assignee: NAGASE CHEMTEX CORPORATION
    Inventors: Takayuki Hashimoto, Takuya Ishibashi, Kazuki Nishimura
  • Patent number: 11791167
    Abstract: A method of processing a substrate includes forming a channel through a substrate, depositing a layer of polycrystalline silicon on sidewalls of the channel, and oxidizing uncovered surfaces of the polycrystalline silicon with an oxidation agent. The oxidizing agent causes formation of an oxidized layer, the oxidized layer having a uniform thickness on uncovered surfaces of the polycrystalline silicon. The method includes removing the oxidized layer from the channel with a removal agent, and repeating steps of oxidizing uncovered surfaces and removing the oxidized layer until removing a predetermined amount of the layer of polycrystalline silicon.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: October 17, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Anthony R. Schepis, Hoyoung Kang
  • Patent number: 11791248
    Abstract: In examples, a semiconductor device comprises a semiconductor die, an opaque mold compound housing covering the semiconductor die, a conductive terminal extending from the mold compound housing, and an insulative coat covering the mold compound housing and at least a portion of the conductive terminal.
    Type: Grant
    Filed: January 10, 2023
    Date of Patent: October 17, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Sreenivasan Kalyani Koduri
  • Patent number: 11791432
    Abstract: Lateral and vertical microstructure enhanced photodetectors and avalanche photodetectors are monolithically integrated with CMOS/BiCMOS ASICs and can also be integrated with laser devices using fluidic assembly techniques. Photodetectors can be configured in a vertical PIN arrangement or lateral metal-semiconductor-metal arrangement where electrodes are in an inter-digitated pattern. Microstructures, such as holes and protrusions, can improve quantum efficiency in silicon, germanium and III-V materials and can also reduce avalanche voltages for avalanche photodiodes. Applications include optical communications within and between datacenters, telecommunications, LIDAR, and free space data communication.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: October 17, 2023
    Assignee: W&WSens Devices, Inc.
    Inventors: Shih-Yuan Wang, Shih-Ping Wang
  • Patent number: 11784257
    Abstract: Semiconductor devices having necked semiconductor bodies and methods of forming semiconductor bodies of varying width are described. For example, a semiconductor device includes a semiconductor body disposed above a substrate. A gate electrode stack is disposed over a portion of the semiconductor body to define a channel region in the semiconductor body under the gate electrode stack. Source and drain regions are defined in the semiconductor body on either side of the gate electrode stack. Sidewall spacers are disposed adjacent to the gate electrode stack and over only a portion of the source and drain regions. The portion of the source and drain regions under the sidewall spacers has a height and a width greater than a height and a width of the channel region of the semiconductor body.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: October 10, 2023
    Assignee: Intel Corporation
    Inventor: Bernhard Sell
  • Patent number: 11776947
    Abstract: Disclosed herein is an electronic component that includes a substrate, a functional layer formed on the substrate and having a plurality of alternately stacked conductor layers and insulating layers, and a plurality of terminal electrodes provided on an uppermost one of the insulating layers. The uppermost one of the insulating layers has a substantially rectangular planar shape and has a protruding part protruding in a planar direction from at least one side in a plan view.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: October 3, 2023
    Assignee: TDK CORPORATION
    Inventors: Yusuke Oba, Kenichi Yoshida, Takashi Ohtsuka, Yuichiro Okuyama, Tomoya Hanai, Yu Fukae
  • Patent number: 11777068
    Abstract: A semiconductor light emitting device includes a semiconductor light source, a resin package surrounding the semiconductor light source, and a lead fixed to the resin package. The lead is provided with a die bonding pad for bonding the semiconductor light source, and with an exposed surface opposite to the die bonding pad The exposed surface is surrounded by the resin package in the in-plane direction of the exposed surface.
    Type: Grant
    Filed: August 10, 2022
    Date of Patent: October 3, 2023
    Assignee: ROHM CO., LTD.
    Inventors: Masahiko Kobayakawa, Kazuhiro Mireba, Shintaro Yasuda, Junichi Itai, Taisuke Okada
  • Patent number: 11764117
    Abstract: Wafer level encapsulated packages includes a wafer, a glass substrate hermetically sealed to the wafer, and an electronic component. The glass substrate includes a glass cladding layer fused to a glass core layer and a cavity formed in the glass substrate. The electronic component is encapsulated within the cavity. In various embodiments, the floor of the cavity is planar and substantially parallel to a plane defined by a top surface of the glass cladding layer. The glass cladding layer has a higher etch rate in an etchant than the glass core layer. In various embodiments, the wafer level encapsulated package is substantially optically transparent. Methods for forming the wafer level encapsulated package and electronic devices formed from the wafer level encapsulated package are also described.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: September 19, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Robert Alan Bellman, Jin Su Kim
  • Patent number: 11749533
    Abstract: Disclosed is a method of manufacturing a power semiconductor component arrangement or a power semiconductor component housing. The method involves a sintering process in which the plurality of layer-shaped unsintered ceramic substrates are converted into a sintered ceramic single layer or multilayer substrate or into a sintered ceramic single layer or multilayer interconnect device. Also disclosed is a power semiconductor component arrangement or a power semiconductor component housing that can be manufactured using the above method. Further disclosed are the uses of the power semiconductor component arrangement or the power semiconductor component housing.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: September 5, 2023
    Assignee: Fraunhofer-Gesellschaft zur förderung der angewandten Forschung e.V.
    Inventors: Steffen Ziesche, Christian Lenz, Uwe Waltrich, Christoph Bayer, Hoang Linh Bach, Andreas Schletz
  • Patent number: 11742396
    Abstract: An apparatus includes a first lateral diffusion field effect transistor (LDFET) having a first threshold voltage and that includes a first gate electrode, a first drain contact, a first source contact, and a first electrically conductive shield plate separated from the first gate electrode and the first source contact by a first interlayer dielectric. A second LDFET of the apparatus has a second threshold voltage and includes a second gate electrode, a second drain contact, and a second source contact. The second source contact is electrically connected to the first source contact of the first LDFET. A control circuit of the apparatus is electrically coupled to the first electrically conductive shield plate and is configured to apply to the first electrically conductive shield plate a first gate bias voltage of a first level to set the first threshold voltage of the first LDFET to a first desired threshold voltage.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: August 29, 2023
    Assignee: Silanna Asia Pte Ltd
    Inventors: Stuart B. Molin, George Imthurn, James Douglas Ballard, Yashodhan Vijay Moghe
  • Patent number: 11742206
    Abstract: A laterally diffused metal oxide semiconductor device can include: a well region having a second doping type; a reduced surface field effect layer of a first doping type formed by an implantation process in a predetermined region of the well region, where a length of the reduced surface field effect layer is less than a length of the well region; a body region of the first doping type extending from a top surface of the well region into the well region; a drain portion of the second doping type extending from the top surface of the well region into the well region; and an insulating structure located between the body region and the drain portion, at least a portion of the insulating structure is located on the top surface of the well region.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: August 29, 2023
    Assignee: Silergy Semiconductor Technology (Hangzhou) LTD
    Inventors: Budong You, Hui Yu, Meng Wang, Yicheng Du, Chuan Peng, Xunyi Song
  • Patent number: 11742249
    Abstract: A fabrication method for a semiconductor device includes measuring a thickness of a semiconductor substrate in which a bulk donor of a first conductivity type is entirely distributed, adjusting an implantation condition in accordance with the thickness of the semiconductor substrate and implanting hydrogen ions from a lower surface of the semiconductor substrate to an upper surface side of the semiconductor substrate, and annealing the semiconductor substrate and forming, in a passage region through which the hydrogen ions have passed, a first high concentration region of the first conductivity type in which a donor concentration is higher than a doping concentration of the bulk donor.
    Type: Grant
    Filed: September 5, 2022
    Date of Patent: August 29, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Motoyoshi Kubouchi, Kosuke Yoshida, Soichi Yoshida, Koh Yoshikawa, Nao Suganuma