Patents Examined by Elizabeth Wood
  • Patent number: 9943836
    Abstract: The present invention relates to a metal modified Y zeolite, its preparation and use. Said zeolite contains 1-15 wt % of IVB group metal as oxide and is characterized in that the ratio of the zeolite surface's IVB group metal content to the zeolite interior's IVB group metal content is not higher than 0.2; and/or the ratio of the distorted tetrahedral-coordinated framework aluminum to the tetrahedral-coordinated framework aluminum in the zeolite lattice structure is (0.1-0.8):1.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: April 17, 2018
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITTUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun Long, Huiping Tian, Shanqing Yu, Zhenbo Wang
  • Patent number: 9943835
    Abstract: A process for ex-situ treatment of a catalyst that contains at least one hydrogenating phase, and at least one amorphous silica-alumina or a zeolite that contains acid. The process includes: a stage for introducing nitrogen by contact at a temperature that is less than 100° C., with at least one basic nitrogen-containing compound that is ammonia or a compound that can be decomposed into ammonia, the compound being introduced at a rate of 0.5-10% by weight (expressed in terms of N), and a sulfurization/activation stage with a gas that contains hydrogen and hydrogen sulfide at a temperature of at least 250° C., with this stage being carried out before or after the stage for introducing said nitrogen-containing compound, and optionally drying the catalyst that is obtained. This treatment allows a rapid, effective start-up on the hydrocracking unit.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: April 17, 2018
    Assignee: EURECAT S.A.
    Inventors: Pierre Dufresne, Mickaël Bremaud, Pauline Galliou, Sharath Kirumakki
  • Patent number: 9931620
    Abstract: Described are catalyst materials and catalytic articles comprising a metal exchanged SAPO material comprising a plurality of substitutional sites consisting essentially of Si(4Al) sites and substantially free of Si(0Al) sites. The materials and catalytic articles are useful in methods and systems to catalyze the reduction of nitrogen oxides in the presence of a reductant.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: April 3, 2018
    Assignee: BASF Corporation
    Inventors: Subramanian Prasad, Martin C. Wende, Jaya L. Mohanan
  • Patent number: 9908111
    Abstract: The invention provides a mixed molecular sieve catalyst, comprising 5-30 wt % Y molecular sieve, 5-30 wt % ZSM-5 molecular sieve and the balance of matrix component and binder component. The invention further provides a method of preparing the mixed molecular sieve catalyst, comprising the following steps: mixing the Y molecular sieve, the ZSM-5 molecular sieve with a matrix material, a binder precursor, a pore former, a dispersant and water to formulate an aqueous slurry; spray drying the slurry; and baking. The invention further provides a method of preparing olefins from methanol with the use of the catalyst. By use of the catalyst of the invention, the selectivity to C3 and C4 olefins is improved significantly.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: March 6, 2018
    Assignee: SHANGHAI BI KE CLEAN ENERGY TECHNOLOGY CO., LTD.
    Inventors: Fan Zhang, Yijun Wang, Guo Rui, Yongsheng Gan, Xiaomang Zhang
  • Patent number: 9895680
    Abstract: Described are fluid catalytic cracking (FCC) compositions, methods of manufacture and use. FCC catalyst compositions comprise particles containing a non-zeolitic component and one or more boron oxide components. In embodiments, the FCC catalyst composition contains a zeolite component and optionally a rare earth component and a transition alumina. FCC catalytic compositions may comprise a first particle type containing one or more boron oxide components and a first matrix component mixed with a second particle type containing a second matrix component, and a zeolite. The FCC catalyst compositions can be used to crack hydrocarbon feeds, particularly resid feeds containing high V and Ni, resulting in lower hydrogen and coke yields.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: February 20, 2018
    Assignee: BASF CORPORATION
    Inventors: Robert McGuire, Jr., Gary M. Smith, Bilge Yilmaz
  • Patent number: 9896628
    Abstract: A hydrocracking catalyst having a support of a composite of mesoporous materials, molecular sieves and alumina, is used in the last bed of a multi-bed system for treating heavy crude oils and residues and is designed to increase the production of intermediate distillates having boiling points in a temperature range of 204° C. to 538° C., decrease the production of the heavy fraction (>538° C.), and increase the production of gasoline fraction (<204° C.). The feedstock to be processed in the last bed contains low amounts of metals and is lighter than the feedstock that is fed to the first catalytic bed.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: February 20, 2018
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Patricia Rayo Mayoral, Jorge Ancheyta Juarez, Gustavo Jesus Marroquin Sanchez, Guillermo Centeno Nolasco, Jorge Fernando Ramirez Solis
  • Patent number: 9895686
    Abstract: A method for producing double-component modified molecular sieve comprises adding molecular sieve to an aqueous solution containing phosphorus to form a mixture, allowing the mixture to react at pH of 1-10, temperature of 70-200° C. and pressure of 0.2-1.2 MPa for 10-200 min, and then filtering, drying and baking the resultant to obtain phosphorus-modified molecular sieve, and then adding the phosphorus-modified molecular sieve to an aqueous solution containing silver ions, allowing the phosphorus-modified molecular sieve to react with silver ions at 0-100° C. in dark condition for 30-150 min, and then filtering, drying and baking. The obtained double-component modified molecular sieve contains 88-99 wt % molecular sieve with a ratio of silica to alumina between 15 and 60, 0.5-10 wt % phosphorus (based on oxides) and 0.01-2 wt % silver (based on oxides), all based on dry matter. A catalyst produced from the double-component modified molecular sieve has improved hydrothermal stability and microactivity.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: February 20, 2018
    Assignee: PetroChina Company Limited
    Inventors: Xionghou Gao, Dong Ji, Haitao Zhang, Hongchang Duan, Di Li, ZhengGuo Tan, Yi Su, Zhicheng Tang, Yi Wang, Yanqing Ma, Yanbo Sun
  • Patent number: 9889439
    Abstract: The present invention relates to a heavy oil catalytic cracking catalyst having a high yield of light oil and preparation methods thereof. The catalyst comprises 2 to 50% by weight of a magnesium-modified ultra-stable rare earth type Y molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high-temperature-resistant inorganic oxides, and 0.01 to 12.5% by weight of rare earth oxide. The magnesium-modified ultra-stable rare earth type Y molecular sieve is obtained by the following manner: the raw material, a NaY molecular sieve, is subjected to a rare earth exchange, a dispersing pre-exchange, a magnesium salt exchange modification, an ammonium salt exchange for sodium reduction, a second exchange and a second calcination. The catalyst provided in the present invention is characteristic in its high conversion capacity of heavy oil and a high yield of light oil.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: February 13, 2018
    Assignee: PetroChina Company Limited
    Inventors: Xionghou Gao, Haitao Zhang, Hongchang Duan, Di Li, Xueli Li, Zhengguo Tan, Xiaoliang Huang, Jinjun Cai, Yunfeng Zheng, Chenxi Zhang, Gengzhen Cao
  • Patent number: 9889436
    Abstract: The chabazite-type zeolite of the present invention has a SiO2/Al2O3 molar ratio of less than 15, and an average particle size from 1.0 ?m to 8.0 ?m. The chabazite-type zeolite of the present invention has excellent durability and heat resistance, and the copper-loaded chabazite-type zeolite has an improved NOx reduction rate at low temperatures compared to conventional copper-loaded chabazite-type zeolite.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: February 13, 2018
    Assignee: TOSOH CORPORATION
    Inventors: Ko Ariga, Hidekazu Aoyama, Yuuki Ito
  • Patent number: 9873111
    Abstract: Process for preparing a catalyst support which process comprises a) mixing pentasil zeolite having a bulk silica to alumina molar ratio in the range of from 20 to 150 with water, a silica source and an alkali metal salt, b) extruding the mixture obtained in step (a), c) drying and calcining the extrudates obtained in step (b), d) subjecting the calcined extrudates obtained in step (c) to ion exchange to reduce the alkali metal content, and e) drying the extrudates obtained in step (d); process for preparing a catalyst by furthermore impregnating such support with platinum in an amount in the range of from 0.001 to 0.1 wt % and tin in an amount in the range of from 0.01 to 0.5 wt %, each on the basis of total catalyst; ethylbenzene dealkylation catalyst obtainable thereby and a process for dealkylation of ethylbenzene which process comprises contacting feedstock containing ethylbenzene with such catalyst.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: January 23, 2018
    Inventors: László Domokos, Peter Geerinck, Aan Hendrik Klazinga
  • Patent number: 9861967
    Abstract: A catalyst for the dehydroaromatization of lower alkanes comprising boron in an amount of less than 1 wt % is supported on an inorganic support. The catalyst is useful in the production of aromatics from lower alkanes.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: January 9, 2018
    Inventors: Ajay Madhav Madgavkar, Ann Marie Lauritzen
  • Patent number: 9861969
    Abstract: The present invention relate to a binderless molecular sieve catalyst and a process for preparing the same, which are mainly useful for solving the problems of the current catalysts, such as lower activity, less pore volume and worse diffusivity. The present invention relates to a novel binderless molecular sieve catalyst, comprising, based on the weight of the catalyst, 90-100 wt. % of a molecular sieve, 0-10 wt. % of a binder, and 0-10 wt. % of an anti-wear agent, wherein said catalyst has a pore volume of 0.1-0.5 ml/g, an average pore diameter of 50-100 nm, and a porosity of 20-40%; the anti-wear agent is selected from the rod or needle-like inorganic materials having a length/diameter ratio of 2-20. Said catalyst has the advantages of higher activity, greater pore volume, larger average pore diameter and porosity, and better diffusivity, and well solves said problems and can be used for the industrial preparation of binderless molecular sieve catalysts.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: January 9, 2018
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAI RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY, SINOPEC
    Inventors: Guangwei Ma, Huiming Zhang, Jingxian Xiao, Liang Chen, Xiqiang Chen
  • Patent number: 9855552
    Abstract: The present invention relates to a metal modified Y zeolite, its preparation and use. Said zeolite contains 1-15 wt % of IVB group metal as oxide and is characterized in that the ratio of the zeolite surface's IVB group metal content to the zeolite interior's IVB group metal content is not higher than 0.2; and/or the ratio of the distorted tetrahedral-coordinated framework aluminum to the tetrahedral-coordinated framework aluminum in the zeolite lattice structure is (0.1-0.8):1.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: January 2, 2018
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Huiping Tian, Shanqing Yu, Zhenbo Wang
  • Patent number: 9844772
    Abstract: The present invention relates to a heavy oil catalytic cracking catalyst and preparation method thereof. The catalyst comprises 2 to 50% by weight of an ultra-stable rare earth type Y molecular sieve, 0.5 to 30% by weight of one or more other molecular sieves, 0.5 to 70% by weight of clay, 1.0 to 65% by weight of high-temperature-resistant inorganic oxides, and 0.01 to 12.5% by weight of rare earth oxide. The ultra-stable rare earth type Y molecular sieve is obtained as follows: the raw material, NaY molecular sieve, is subjected to a rare earth exchange and a dispersing pre-exchange, and the molecular sieve slurry is filtered, washed and subjected to a first calcination to produce a “one-exchange one-calcination” rare earth sodium Y molecular sieve, wherein the order of the rare earth exchange and the dispersing pre-exchange is not limited; and the “one-exchange one-calcination” rare earth sodium Y molecular sieve is further subjected to ammonium salt exchange for sodium reduction and a second calcination.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 19, 2017
    Assignee: PetroChina Company Limited
    Inventors: Xionghou Gao, Haitao Zhang, Zhengguo Tan, Di Li, Dong Ji, Hongchang Duan, Chenxi Zhang
  • Patent number: 9839905
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: December 12, 2017
    Assignee: BASF CORPORATION
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 9840422
    Abstract: The present invention provides a magnesium-modified ultra-stable rare earth type Y molecular sieve and the preparation method thereof, which method is carried out by subjecting a NaY molecular sieve as the raw material to a rare earth exchange and a dispersing pre-exchange, then to an ultra-stabilization calcination treatment, and finally to a magnesium modification. The molecular sieve comprises 0.2 to 5% by weight of magnesium oxide, 1 to 20% by weight of rare earth oxide, and not more than 1.2% by weight of sodium oxide, and has a crystallinity of 46 to 63%, and a lattice parameter of 2.454 nm to 2.471 nm. In contrast to the prior art, in the molecular sieve prepared by this method, rare earth ions are located in sodalite cages, which is demonstrated by the fact that no rare earth ion is lost during the reverse exchange process. Moreover, the molecular sieve prepared by such a method has a molecular particle size D(v,0.5) of not more than 3.0 ?m and a D(v,0.9) of not more than 20 ?m.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: December 12, 2017
    Assignee: PetroChina Company Limited
    Inventors: Xionghou Gao, Haitao Zhang, Hongchang Duan, Chaowei Liu, Di Li, Xueli Li, Zhengguo Tan, Yunfeng Zheng, Xiaoliang Huang, Jinjun Cai, Chenxi Zhang
  • Patent number: 9827560
    Abstract: There is disclosed a highly crystalline, small crystal, ferrierite zeolite prepared from a gel containing a source of silica, alumina, alkali metal and a combination of two templating agents. The resulting material includes ferrierite crystals having a particle size of about or less than about 200 nm. The desired crystal size can be achieved by using a specific composition of the gel. The purity of the material and the crystal size was determined by using X-ray powder diffraction and scanning electron microscopy. The material has excellent surface area and micropore volume as determined by nitrogen adsorption.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: November 28, 2017
    Assignee: PQ Corporation
    Inventors: Anton Petushkov, Hong-Xin Li, William E. Cormier
  • Patent number: 9827558
    Abstract: A catalyst is provided for production of hydrocarbons including monocyclic aromatic hydrocarbons having a carbon number of 6 to 8 and aliphatic hydrocarbons having a carbon number of 3 to 4 from feedstock in which a 10 vol % distillation temperature is 140° C. or higher and a 90 vol % distillation temperature is 380° C. or lower. The catalyst includes crystalline aluminosilicate including large-pore zeolite having a 12-membered ring structure.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: November 28, 2017
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Shinichiro Yanagawa, Masahide Kobayashi, Kazuaki Hayasaka
  • Patent number: 9821300
    Abstract: The invention relates to a process for producing a particulate, Si-bonded fluidized-bed catalyst having improved abrasion resistance, which comprises the steps I. provision of an aqueous suspension comprising zeolite particles, II. addition of a silicone resin mixture comprising one or more hydrolyzable silicone resin precondensates and mixing of the aqueous suspension and the silicone resin mixture, III. spray drying of the mixture obtained from step II, with the mixture being homogenized before spray drying, and IV. calcination of the spray-dried fluidized-bed catalyst obtained from step III, and an Si-bonded fluidized-bed catalyst which can be produced by this process and also its use for the nonoxidative dehydroaromatization of C1-C4-aliphatics.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: November 21, 2017
    Assignee: BASF SE
    Inventors: Joana Coelho Tsou, Sebastian Ahrens, Christian Schneider, Thomas Heidemann, Bilge Yilmaz, Robert Bayer, Michael Schlei, Sebastian Kranz
  • Patent number: 9821301
    Abstract: Provided are zeolite catalysts that allow reactions to proceed at temperatures as low as possible when lower olefins are produced from hydrocarbon feedstocks with low boiling points such as light naphtha, make it possible to make propylene yield higher than ethylene yield in the production of lower olefins, and have long lifetime. The zeolite catalysts are used in the production of lower olefins from hydrocarbon feedstocks with low boiling points such as light naphtha. The zeolite catalysts are MFI-type crystalline aluminosilicates containing iron atoms and have molar ratios of iron atoms to total moles of iron atoms and aluminum atoms in the range from 0.4 to 0.7. The use of the zeolite catalysts make it possible to increase propylene yield, to lower reaction temperatures, and to extend catalyst lifetime.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: November 21, 2017
    Assignee: CHIYODA CORPORATION
    Inventors: Shinya Hodoshima, Fuyuki Yagi, Azusa Motomiya, Shuhei Wakamatsu, Sachio Asaoka