Patents Examined by Elizabeth Wood
  • Patent number: 9580328
    Abstract: Compositions and methods for preparing mesoporous and/or mesostructured materials from low Si/Al zeolites. Various embodiments described herein relate to preparation of mesoporous and/or mesostructured zeolites via a framework modification step followed by a mesopore introduction step.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: February 28, 2017
    Assignee: Rive Technology, Inc.
    Inventors: Javier Garcia Martinez, Ernest Senderov, Richard Hinchey
  • Patent number: 9579637
    Abstract: The present invention relates to a SAPO-34 molecular sieve having both micropores and mesopores and synthesis method thereof. The mesopore diameter in the molecular sieve is in a range of 2-10 nm and the mesopore volume thereof is 0.03-0.3 cm3/g. Triethylamine is used as a template agent and the pore size modifiers are added to the synthesis gel at the same time in the synthesis process, thereby the prepared molecular sieve crystals have mesopore distribution besides micropores. The SAPO-34 molecular sieve synthesized in the present invention can be used as catalysts for conversion of oxygen-containing compounds to lower olefins.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: February 28, 2017
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Lei Xu, Peng Tian, Zhongmin Liu, Lixin Yang, Shuanghe Meng, Changqing He, Cuiyu Yuan, Yue Qi
  • Patent number: 9580329
    Abstract: Mesoporous X and A zeolites and methods for production thereof are disclosed herein. Such mesoporous zeolites can be prepared by contacting an initial zeolite with an acid in conjunction with a mesopore forming agent. The initial zeolite can have a framework silicon-to-aluminum content in the range of from about 1 to about 2.5. Additionally, such mesoporous zeolites can have a total 20 to 135 ? diameter mesopore volume of at least 0.05 cc/g.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: February 28, 2017
    Assignee: Rive Technology, Inc.
    Inventors: Kunhao Li, Javier Garcia-Martinez, Michael G. Beaver
  • Patent number: 9562134
    Abstract: This invention relates to novel double metal cyanide catalysts and to a process for the production of these double metal cyanide catalysts. These DMC catalysts can be used to prepare polyoxyalkylene polyols which have low amounts of high molecular weight tail compared polyoxyalkylene polyols prepared from DMC catalysts of the prior art.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 7, 2017
    Assignee: Covestro LLC
    Inventors: Kenneth G. McDaniel, George G. Combs
  • Patent number: 9555391
    Abstract: Provided is a carbon dioxide adsorbent with which large quantities of carbon dioxide can be adsorbed and removed even under conditions having low carbon dioxide concentrations such as when under subatmospheric pressure or when under an environment having a carbon dioxide partial pressure of less than atmospheric pressure, said carbon dioxide adsorbent exhibiting excellent adsorption activity. A carbon dioxide adsorbent including at least a ZSM-5 zeolite including barium (Ba) or strontium (Sr) is characterized in that the ZSM-5 zeolite includes M-O-M bonds (M being Ba or Sr, and O being oxygen). The M-O-M bonds interact strongly with carbon dioxide, and thus carbon dioxide can be adsorbed effectively and in large volumes even under conditions having low carbon dioxide concentrations.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: January 31, 2017
    Assignee: PANASONIC CORPORATION
    Inventors: Akiko Yuasa, Yasushige Kuroda, Atsushi Itadani
  • Patent number: 9555401
    Abstract: A molecular sieve blend with improved performance characteristics produced by preparing or obtaining a hydrophilic zeolite, particularly a hydrophilic zeolite A with a low SiO2:Al2O3 ratio, preparing or obtaining a hydrophobic silicon based binder, particularly a hydrophobic colloidal silica or a hydrophobic siloxane based material, mixing the zeolite with the silicon based binder and, in one embodiment, a seed containing small quantities of a clay binding agent and the zeolite, to form a mixture, and forming the mixture into the molecular sieve blend.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: January 31, 2017
    Assignee: ZEOCHEM LLC
    Inventors: Kerry Weston, Patrick Purcell
  • Patent number: 9550182
    Abstract: An SCR-active zeolite catalyst and a method for producing same. To produce the catalyst, an Fe ion-exchanged zeolite is initially subjected to a first temperature treatment within a range of 300 to 600° C. in a reducing hydrocarbon atmosphere such that the oxidation state of the Fe ions decreases and/or the dispersity of the Fe ions on the zeolite increases, whereupon the reduced zeolite is subjected to a second temperature treatment within a range of 300 to 600° C. in an oxidizing atmosphere such that hydrocarbon residues or carbon residues are oxidatively removed, the zeolite being calcined to obtain a catalyst material during the two temperature treatments. Iron contained in the zeolite is stabilized in an oxidation state of less than +3 and/or the dispersity of the Fe ions on the zeolite is permanently increased such that a high SCR activity is achieved within a temperature range of less than 300° C.
    Type: Grant
    Filed: August 21, 2010
    Date of Patent: January 24, 2017
    Assignee: Johnson Matthey Catalysts (Germany) GMBH
    Inventors: Jorg Werner Munch, Ralf Dotzel
  • Patent number: 9550146
    Abstract: To provide a catalyst having excellent performance and durability by improving a NOx reduction ratio at 350° C. or higher without deteriorating excellent durability of a Ti—V—Mo—P catalyst in view of problems of conventional art.
    Type: Grant
    Filed: September 5, 2011
    Date of Patent: January 24, 2017
    Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.
    Inventors: Yasuyoshi Kato, Seiji Ikemoto
  • Patent number: 9545622
    Abstract: A hydroalkylation catalyst comprising a molecular sieve and a compound of a hydrogenation metal is activated by treating the catalyst at a temperature of less than about 250° C. in the presence of hydrogen.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: January 17, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Edward Andrew Lemon, Jr., Terry Eugene Helton, Tan-Jen Chen, Charles Morris Smith
  • Patent number: 9527071
    Abstract: NH3—SCR catalyst, containing iron promoted beta-zeolite, cerium oxide and titanium oxide and optionally further containing at least one of tungsten oxide, neodymium oxide, silicon oxide and diatomaceous earth, and method of preparation thereof.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: December 27, 2016
    Assignee: Haldor Topsoe A/S
    Inventors: Lived J. Lemus-Yegres, Niklas Bengt Jakobsson
  • Patent number: 9527064
    Abstract: The present invention provides a method for producing a silica composite by the steps of: preparing a raw material mixture containing silica and zeolite; drying the raw material mixture to obtain a dried product; and calcining the dried product, wherein the method comprising the step of allowing the raw material mixture to contain phosphoric acid and/or phosphate or bringing a solution of phosphoric acid and/or phosphate into contact with the zeolite and/or the dried product, or a combination thereof to thereby adjust a phosphorus content in the silica composite to 0.01 to 1.0% by mass based on the total mass of the silica composite.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: December 27, 2016
    Assignee: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Kenji Akagishi, Ryusuke Miyazaki
  • Patent number: 9517453
    Abstract: Methods for enhancing the mesoporosity of a zeolite-containing material. Such methods may comprise contacting a composite shaped article containing at least one zeolite and at least one non-zeolitic material with at least one pH controlling agent and at least one surfactant. Such methods may be performed under conditions sufficient to increase the pore volume of at least one 10 angstrom subset of mesoporosity.
    Type: Grant
    Filed: March 29, 2014
    Date of Patent: December 13, 2016
    Assignee: Rive Technology, Inc.
    Inventors: Javier Garcia Martinez, Lawrence B. Dight, Barry K. Speronello
  • Patent number: 9518229
    Abstract: Disclosed are catalyst compositions including zeolite and silica components, methods of making, and processes of using in the thermo-catalytic conversion of biomass. Such disclosed methods of making include: i) spray drying of the catalyst precursor slurry at a pH below 1, or ii) the removal of ions such as sodium from the binder material prior to spray drying the catalyst precursor slurry at a pH below 2.7, or iii) spray drying the catalyst precursor including a pore regulating agent followed by steam treating, or iv) some combination of i), ii) and iii).
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 13, 2016
    Assignee: Inaeris Technologies, LLC
    Inventors: Jerry Jon Springs, Bruce ADkins, Stephen Schuyten, Gopal Juttu, Christine M. Henry, Kelsey Shogren
  • Patent number: 9518233
    Abstract: The present invention relates to a bifunctional catalyst for a hydrodewaxing process with improved isomerization selectivity, and to a method for manufacturing the same, and more particularly to a bifunctional catalyst and to a method for manufacturing same, which is characterized in that EU-2 zeolite with a controlled degree of phase transformation is used as a catalyst support having an acid site. The EU-2 zeolite, the degree of phase transformation of which is controlled, includes, by controlling synthesis parameters of EU-2, predetermined amounts of materials that are phase-transformed from EU-2 crystals such as cristobalite and quartz. The metal loaded bifunctional catalyst according to the present invention improves selectivity of the isomerization process, rather than a cracking reaction, during a hydroisomerization reaction of n-hexadecane. Therefore, the bifunctional catalyst can be widely used as a catalyst for a dewaxing process such as lubricant base oil and diesel oil.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: December 13, 2016
    Assignee: SK INNOVATION CO., LTD.
    Inventors: Tae Jin Kim, Seung Woo Lee, Yoon Kyung Lee, Seung Hoon Oh, Jae Suk Choi
  • Patent number: 9517461
    Abstract: Described is an iron-containing zeolite wherein the number of iron sites, based on the zeolite, is greater than the number of cationic positions in the zeolite. Also described is an iron-containing zeolite preparable by gas phase reaction with iron pentacarbonyl, said zeolite having a greater specific surface area than iron-containing zeolites prepared analogously by ion exchange and/or being more hydrothermally stable than iron-containing zeolites prepared analogously by ion exchange, or wherein the number of iron clusters larger than 10 nm is less than 15% by weight, based on the total amount of iron. Further described is a process for preparing an iron-containing zeolitic material, which comprises doping with iron by means of a gas phase reaction using iron pentacarbonyl. Further described is a process for catalytic reduction of nitrogen oxides using catalysts comprising said iron-containing zeolitic materials.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: December 13, 2016
    Assignee: BASF SE
    Inventors: Dirk A. Grossschmidt, Bilge Yilmaz, Dirk Klingler, Bernd Zoels
  • Patent number: 9518232
    Abstract: A hydroisomerization catalyst of the present invention is obtained by calcining a catalyst composition containing an ion-exchanged molecular sieve or a calcined product thereof, and at least one metal selected from the group consisting of metals of Groups 8 to 10 in Periodic Table of the elements, molybdenum and tungsten, carried on the ion-exchanged molecular sieve or the calcined product thereof, wherein the ion-exchanged molecular sieve is obtained by ion-exchanging a molecular sieve, which includes nanocrystals having a pore structure of ten-membered rings or eight-membered rings and having a ratio of the pore volume to the external surface area ([pore volume]/[external surface area]) of 2.0×10?4 mL/m2 to 8.0×10?4 mL/m2 and contains an organic template, in a solution containing a cationic species.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: December 13, 2016
    Assignee: JX NIPPON OIL & ENERGY CORPORATION
    Inventor: Kazuaki Hayasaka
  • Patent number: 9517458
    Abstract: There is disclosed a microporous crystalline material having pore opening ranging from 3 to 5 Angstroms, where the material comprises a first metal chosen from alkali earth group, rare earth group, alkali group, or mixtures thereof, and a second metal chosen from iron, copper or mixtures thereof; and has a molar silica to alumina ratio (SAR) from 3 to 10. The microporous crystalline material disclosed herein may comprise a crystal structure having building units of double-6-rings (d6r) and pore opening of 8-rings as exemplified with framework types defined by the Structure Commission of the International Zeolite Association having structural codes of CHA, LEV, AEI, AFT, AFX, EAB, ERI, KFI, SAT, TSC, and SAV. There is also disclosed a method of selective catalytic reduction of nitrogen oxides in exhaust gas, comprising at least partially contacting the exhaust gases with an article comprising the disclosed microporous crystalline material.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 13, 2016
    Assignee: PQ Corporation
    Inventors: Hong-Xin Li, Bjorn Moden, William E. Cormier
  • Patent number: 9511361
    Abstract: A catalyst containing a pentasil-type alumosilicates and a binder, in the form of spheres having an average diameter between 0.3 and 7 mm, wherein the BET surface area of the catalyst ranges from 300 to 600 m2/g. Also disclosed is a method for producing the catalyst, wherein primary crystallites of the aluminosilicate having an average diameter of at least 0.01 ?m and less than 0.1 ?m are mixed with the binder, shaped into spheres having an average diameter between 0.3 and 7 mm, and subsequently calcined. Also disclosed is the use of the catalyst for converting methanol into olefins, in particular propylene. Also disclosed is a method for producing olefins from methanol, in which a feed gas is fed across the catalyst.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: December 6, 2016
    Assignees: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH, AIR LIQUIDE GLOBAL E&C SOLUTIONS GERMANY GMBH
    Inventors: Götz Burgfels, Manfred D. Frauenrath, Nadine Fromm, Angelika Glienke, Martin Rothämel, Sven Pohl
  • Patent number: 9504996
    Abstract: [Problem] To provide a strontium ion-exchanged clinoptilolite having excellent nitrogen-absorbing properties; and a method for producing the strontium ion-exchanged clinoptilolite. [Solution] Synthetic clinoptilolite having a strontium ion at an ion exchange site thereof is useful as a nitrogen adsorbent. The synthetic clinoptilolite can be produced by bringing a solution containing a strontium ion into contact with synthetic clinoptilolite under ambient pressure to cause ion exchange.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: November 29, 2016
    Assignee: TOSOH CORPORATION
    Inventors: Shigeru Hirano, Hajime Funakoshi, Yoju Shimizu
  • Patent number: 9486796
    Abstract: The invention relates to a process for producing a particulate, Si-bonded fluidized-bed catalyst having improved abrasion resistance, which comprises the steps I. provision of an aqueous suspension comprising zeolite particles, II. addition of a silicone resin mixture comprising one or more hydrolyzable silicone resin precondensates and mixing of the aqueous suspension and the silicone resin mixture, III. spray drying of the mixture obtained from step II, with the mixture being homogenized before spray drying, and IV. calcination of the spray-dried fluidized-bed catalyst obtained from step III, and an Si-bonded fluidized-bed catalyst which can be produced by this process and also its use for the nonoxidative dehydroaromatization of C1-C4-aliphatics.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: November 8, 2016
    Assignee: BASF SE
    Inventors: Joana Coelho Tsou, Sebastian Ahrens, Christian Schneider, Thomas Heidemann, Bilge Yilmaz, Robert Bayer, Michael Schlei, Sebastian Kranz