Patents Examined by H. Jey Tsai
  • Patent number: 8110493
    Abstract: A method for forming a PECVD deposited amorphous carbon or ashable hard mask (AHM) in a trench or a via with less than 30% H content at a process temperature below 500° C., e.g., about 400° C. produces low H content hard masks with high selectivity and little or no hard mask on the sidewalls. The deposition method utilizes a pulsed precursor delivery with a plasma etch while the precursor flow is off.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: February 7, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: Pramod Subramonium, Zhiyuan Fang, Jon Henri
  • Patent number: 8105024
    Abstract: A seal assembly for a gas turbine is arranged in grooves of a rotor heat shield having several bends. The assembly comprises four seal portions overlapping one another and extending in the axial, radial, and circumferential direction with respect to the turbine rotor. A holding means retains the radial sections of one seal portion allowing a limited movement of said seal portion independent of another seal portion. The independent movement assures contact of the individual seal portions with all mating surfaces of the rotor heat shield and improved sealing function regardless of displacements of the rotor heat shield and tolerances of turbine parts.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: January 31, 2012
    Assignee: Alstom Technology Ltd
    Inventors: Alexander Khanin, Arkadi Fokine, Maxim Konter, Sergey Vorontsov
  • Patent number: 8093070
    Abstract: A method is provided for fabricating a ferroelectric capacitor structure including a method for etching and cleaning patterned ferroelectric capacitor structures in a semiconductor device. The method comprises etching portions of an upper electrode, etching ferroelectric material, and etching a lower electrode to define a patterned ferroelectric capacitor structure, and etching a portion of a lower electrode diffusion barrier structure. The method further comprises ashing the patterned ferroelectric capacitor structure using a first ashing process, where the ash comprises an oxygen/nitrogen/water-containing ash, performing a wet clean process after the first ashing process, and ashing the patterned ferroelectric capacitor structure using a second ashing process.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: January 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Francis Gabriel Celii, Kezhakkedath R. Udayakumar, Gregory B. Shinn, Theodore S. Moise, Scott R. Summerfelt
  • Patent number: 8066487
    Abstract: A fan shaft seat structure including a shaft bushing and a heat dissipation member. The shaft bushing has an open end, a closed end and a, connection section. A receiving space is defined between the open end and the closed end. The connection section extends from the closed end in a direction reverse to the receiving space. The heat dissipation member has a first face and a second face. The first face is flush with a first end of the connection section in contact with the closed end of the shaft bushing. The second face is flush with a second end of the connection section. The shaft bushing is integrally connected with the heat dissipation member to increase heat dissipation area and save working time and manufacturing cost as well as achieve better heat dissipation effect.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: November 29, 2011
    Assignee: Asia Vital Components Co., Ltd.
    Inventor: Wei-Jun Luo
  • Patent number: 8062970
    Abstract: The present invention is a production method for a semiconductor device equipped with a conductive film with predetermined film thickness on a sidewall of a concave portion formed in an insulating film, and comprises a step of forming the concave portion in the insulation film formed on a semiconductor substrate. Herein, the concave portion is a generic name of a via-hole and a trench. This production method comprises a step of forming a conductive film with film thickness, which is film thickness of a conductive film to be formed in the concave portion, and which is film thickness, calculated based upon the depth of the concave portion and a projected area of the sidewall of said concave portion when viewing the concave portion from the upper surface, and to be formed over the upper surface of the insulating film where the concave portion is formed. In other words, a film is formed taking the variation of configuration of these based upon a projected area of a via-hole or a trench into consideration.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: November 22, 2011
    Assignee: Panasonic Corporation
    Inventor: Tomoya Tanaka
  • Patent number: 8058098
    Abstract: A method includes the steps of providing a carrier comprising a plurality of cavities; placing at least one semiconductor element into each of the cavities; filling the plurality of cavities with a packaging material; and removing the carrier.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 15, 2011
    Assignee: Infineon Technologies AG
    Inventor: Keong Bun Hin
  • Patent number: 8057173
    Abstract: A single-bearing fan structure includes a fan frame having a bearing cup with a bearing received therein, the bearing cup having a radially inward protruded lip portion formed at a first end to abut on a top of the bearing, and a groove internally formed at a second end; a blade hub having a rotary shaft fixedly connected thereto with a distal end of the rotary shaft inserted into the bearing; a retainer engaged with the groove; a first elastic element fitted around the rotary shaft and located between the blade hub and the bearing; and a second elastic element received in the bearing cup and located between the bearing and the retainer. The first and second elastic elements and the bearing respectively axially and radially support the blade hub, enabling the fan structure to operate stably and have extended service life.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: November 15, 2011
    Assignee: Asia Vital Components ( Shen Zhen) Co., Ltd.
    Inventor: Ming-ju Chen
  • Patent number: 8003464
    Abstract: Methods of manufacturing a semiconductor device having an RCAT are provided. The method includes forming a first recess having a first depth formed in an active region of a semiconductor substrate, and a second recess having a second depth that is less than the first depth formed in an isolation layer. The depth of the second recess is decreased by removing the isolation layer from the upper surface of the isolation layer by a desired thickness. A gate dielectric layer is formed on an inner wall of the first recess and a gate is formed on the gate dielectric layer.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: August 23, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gil-sub Kim, Yong-il Kim, Jong-seop Lee, Jai-kyun Park, Yun-sung Lee, Nam-jung Kang
  • Patent number: 8004876
    Abstract: A computing system for implementing at least one electronic circuit with gain comprises at least one two-dimensional molecular switch array. The molecular switch array is formed by assembling two or more crossed planes of wires into a configuration of devices. Each device comprises a junction formed by a pair of crossed wires and at least one connector species that connects the pair of crossed wires in the junction. The junction has a functional dimension in nanometers, and includes a switching capability provided by both (1) one or more connector species and the pair of crossed wires and (2) a configurable nano-scale wire transistor having a first state that functions as a transistor and a second state that functions as a conducting semiconductor wire. Specific connections are made to interconnect the devices and connect the devices to two structures that provide high and low voltages.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: August 23, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Gregory S. Snider, Philip J. Kuekes, R. Stanley Williams
  • Patent number: 7977753
    Abstract: A high voltage BICMOS device and a method for manufacturing the same, which may improve the reliability of the device by securing a distance between adjacent DUF regions, are provided. The high voltage BICMOS device includes: a reverse diffusion under field (DUF) region formed by patterning a predetermined region of a semiconductor substrate; a diffusion under field (DUF) region formed in the substrate adjacent to the reverse DUF region; a spacer formed at a sidewall of the reverse DUF region; an epitaxial layer formed on an entire surface of the substrate; and a well region formed in contact with the DUF region.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: July 12, 2011
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwang Young Ko
  • Patent number: 7968403
    Abstract: A method and structure are disclosed that are advantageous for aligning a contact plug within a bit line contact corridor (BLCC) to an active area of a DRAM that utilizes an insulated sleeve structure. A sleeve insulator layer is deposited in an opening to protect one or more conductor layers from conductive contacts formed in the opening. The sleeve insulator layer electrically insulates a conductive plug from the conductor layer and self-aligns the BLCC so as to improve contact plug alignment tolerances between the BLCC and the capacitor or conductive components.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: June 28, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Philip J. Ireland, Howard E. Rhodes
  • Patent number: 7910985
    Abstract: Described is a method for fabricating a semiconductor device having an FET of a trench-gate structure obtained by disposing a conductive layer, which will be a gate, in a trench extended in the main surface of a semiconductor substrate, wherein the upper surface of the trench-gate conductive layer is formed equal to or higher than the main surface of the semiconductor substrate. In addition, the conductive layer of the trench gate is formed to have a substantially flat or concave upper surface and the upper surface is formed equal to or higher than the main surface of the semiconductor substrate. Moreover, after etching of the semiconductor substrate to form the upper surface of the conductive layer of the trench gate equal to or higher than the main surface of the semiconductor substrate, a channel region and a source region are formed by ion implantation. The semiconductor device thus fabricated according to the present invention is free from occurrence of a source offset.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: March 22, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Inagawa, Nobuo Machida, Kentaro Ooishi
  • Patent number: 7892868
    Abstract: A LED packaging method includes a procedure of placing a screen plate having stepped holes on a substrate carrying LED chips, a procedure of reversing the screen plate with respect to the substrate, and a procedure of packaging the LED chips with a first packaging adhesive and a second packaging adhesive by means of applying the first packaging adhesive to the small diameter portion of each stepped hole when the first side of the screen plate is attached to the substrate and then applying the second packaging adhesive to the big diameter portion of each stepped hole after the screen plate is reversed.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: February 22, 2011
    Assignee: Genius Electronic Optical Co., Ltd.
    Inventors: Ming-Yen Chen, Fan-Hsiu Wei, Feng-Kuan Chen, Sheau-Wen Wu, Yueh-Hsia Chiu
  • Patent number: 7875513
    Abstract: A plurality of bipolar transistors are formed by forming a common conduction region, a plurality of control regions extending each in an own active areas on the common conduction region, a plurality of silicide protection strips, and at least one control contact region. Silicide regions are formed on the second conduction regions and the control contact region. The second conduction regions may be formed by selectively implanting a first conductivity type dopant areas on a first side of selected silicide protection strips. The control contact region is formed by selectively implanting an opposite conductivity type dopant on a second side of the selected silicide protection strips.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: January 25, 2011
    Inventors: Fabio Pellizzer, Roberto Bez, Paola Zuliani, Augusto Benvenuti
  • Patent number: 7871832
    Abstract: The generation of a chip identifier supporting at least one integrated circuit, which includes providing a cutout of least one conductive path by cutting the chip, the position of the cutting line relative to the chip conditioning the identifier.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: January 18, 2011
    Assignee: STMicroelectronics S.A.
    Inventor: Fabrice Marinet
  • Patent number: 7871856
    Abstract: A method of manufacturing a stacked-type semiconductor device, comprises: arranging a plurality of stacked chips obtained by stacking semiconductor chips on a plurality of stages on a support substrate; connecting a semiconductor chip of each stage in each stacked chip and the support substrate by wire while performing heating in units of stacked chips; performing plastic molding of each stacked chip; and separating the stacked chips from each other; an apparatus for manufacturing a stacked-type semiconductor device, comprising divided heater blocks formed under a support substrate on which a plurality of stacked chips obtained by stacking a plurality of semiconductor chips are arranged, the divided heater blocks being formed with respect to the stacked chips, and a heating device to selectively transmit heat to a stacked chip subjected to a wire bonding.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: January 18, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Atsushi Yoshimura
  • Patent number: 7868390
    Abstract: First, a semiconductor substrate having a first active region and a second active region is provided. The first active region includes a first transistor and the second active region includes a second transistor. A first etching stop layer, a stress layer, and a second etching stop layer are disposed on the first transistor, the second transistor and the isolation structure. A first etching process is performed by using a patterned photoresist disposed on the first active region as a mask to remove the second etching stop layer and a portion of the stress layer from the second active region. The patterned photoresist is removed, and a second etching process is performed by using the second etching stop layer of the first active region as a mask to remove the remaining stress layer and a portion of the first etching stop layer from the second active region.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: January 11, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Pei-Yu Chou, Shih-Fang Tzou, Jiunn-Hsiung Liao
  • Patent number: 7838946
    Abstract: A method for fabricating a semiconductor structure is disclosed. A substrate with a first transistor having a first dummy gate and a second transistor having a second dummy gate is provided. The conductive types of the first transistor and the second transistor are different. The first and second dummy gates are simultaneously removed to form respective first and second openings. A high-k dielectric layer, a second type conductive layer and a first low resistance conductive layer are formed on the substrate and fill in the first and second openings, with the first low resistance conductive layer filling up the second opening. The first low resistance conductive layer and the second type conductive layer in the first opening are removed. A first type conductive layer and a second low resistance conductive layer are then formed in the first opening, with the second low resistance conductive layer filling up the first opening.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: November 23, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Chih-Hao Yu, Li-Wei Cheng, Che-Hua Hsu, Tian-Fu Chiang, Cheng-Hsien Chou, Chien-Ming Lai, Yi-Wen Chen, Chien-Ting Lin, Guang-Hwa Ma
  • Patent number: 7820461
    Abstract: A method for making a semiconductor device with vertical electron injection, including: transferring a monocrystalline thin film onto a first face of a support substrate; producing at least one electronic component from the monocrystalline thin film; forming at least one recess in a second face of the substrate to enable electric or electronic access to the electronic component through the monocrystalline thin film; and producing a vertical electron injector configured to inject electrons into the electronic component.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: October 26, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Robert Baptist, Fabrice Letertre
  • Patent number: 7816254
    Abstract: A film-forming method for forming a metal film on a substrate by a sputtering process includes the steps of depressurizing a processing space, in which deposition of the metal film is caused by the sputtering process, applying a DC bias voltage between the substrate and a target disposed in the processing space so as to face the substrate, and igniting plasma by introducing secondary electrons to the processing space from a secondary electron source.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: October 19, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tatsuo Muraoka, Kazunori Kobayashi