Patents Examined by Hrayr A. Sayadian
  • Patent number: 10644146
    Abstract: A vertical bi-directional device includes first and second conductive gates in a semiconductor layer with a first vertical gate oxide on a sidewall of the first conductive gate and a second vertical gate oxide on a sidewall of the second conductive gate. A first heavily doped region of a first conductivity type is at the surface adjacent the first conductive gate, and a second heavily doped region of the first conductive type is at the surface adjacent to the second conductive gate. Doped regions of the first conductivity type extend below the conductive gates towards a substrate. A doped region of a second conductivity type extends laterally from the first vertical gate oxide to the second vertical gate oxide, and a heavily doped region of the second conductivity type is at the surface of the semiconductor layer, between the first and second heavily doped regions of the first conductivity type.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 5, 2020
    Assignee: NXP USA, Inc.
    Inventors: Moaniss Zitouni, Vishnu Khemka, Ganming Qin, Tanuj Saxena, Raghuveer Vankayala Gupta, Mark Edward Gibson
  • Patent number: 10636826
    Abstract: The present technology relates to a solid-state imaging device, a manufacturing method, and an electronic device, which can improve sensitivity while improving color mixing. The solid-state imaging device includes a first wall provided between a pixel and a pixel arranged two-dimensionally to isolate the pixels, in which the first wall includes at least two layers including a light shielding film of a lowermost layer and a low refractive index film of which refractive index is lower than the light shielding film. The present technology can be applied to, for example, a solid-state imaging device, an electronic device having an imaging function, and the like.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: April 28, 2020
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Yuka Nakamoto, Yukihiro Sayama, Nobuyuki Ohba, Sintaro Nakajiki
  • Patent number: 10636859
    Abstract: A display device is disclosed, and the display device includes a substrate including first to third display regions, the second and the third display regions being spaced from each other, each of the second and third display regions having an area smaller than that of the first display region and being continuous to the first display region, first to third pixels in the first to third display regions, first to third lines connected to the first to third pixels, and a dummy part configured to compensate for a difference between a load value of the first lines and load values of the second and third lines, wherein the second display region includes a first sub-region adjacent to the first display region and a second sub-region spaced from the first display region, and the third display region includes a third sub-region adjacent to the first display region and a fourth sub-region spaced from the first display region.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: April 28, 2020
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyung Jun Park, Yang Wan Kim, Byung Sun Kim, Su Jin Lee, Jae Yong Lee, Ji Hyun Ka, Tae Hoon Kwon, Jin Tae Jeong, Seung Ji Cha
  • Patent number: 10636727
    Abstract: A packaged electrical device that includes a cured adhesive layer and a cured layer of die attach material coupled between a semiconductor die and a substrate. The packaged electrical device may also include wire bonds coupled between the substrate and leads of the semiconductor die. In addition, the packaged electrical device may be encapsulated in molding compound. A method for fabricating a packaged electrical device. The method includes printing a layer of die attach material over a semiconductor wafer and applying a layer of 2-in-1 die attach film over the layer of die attach material. The method also includes singulating the semiconductor wafer to create a semiconductor die and placing the semiconductor die onto a substrate. In addition the method includes wire bonding the substrate to leads of the semiconductor die and encapsulating the device in molding compound.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: April 28, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Mohammad Waseem Hussain, Steven Murphy, Leslie E. Stark
  • Patent number: 10622220
    Abstract: A combined nanofluidic and integrated circuit device includes a semiconductor wafer, which includes a substrate with active circuitry formed in the substrate; an oxide layer deposited adjacent the active circuitry; a stressor film deposited onto or into the oxide layer in sections, wherein the stressor film has a higher coefficient of thermal expansion than the oxide layer has; and a nanochannel formed in the oxide layer between the sections of the stressor film. According to an exemplary embodiment, the nanochannel is formed in the oxide layer by cooling the oxide layer and the stressor film to a fracture propagation temperature that is less than first and second temperatures at which the oxide layer and the stressor film are deposited on the substrate.
    Type: Grant
    Filed: November 10, 2018
    Date of Patent: April 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Xiao Hu Liu, Huan Hu, Jianshi Tang, Ning Li
  • Patent number: 10622298
    Abstract: A wiring substrate includes a wiring, a solder resist layer formed on the wiring and having an opening from which a part of the wiring is exposed, a copper seed layer formed in the opening, a copper layer formed on the seed layer and filling the opening up to a certain depth thereof, and a metal post erected on the copper layer, having an upper surface located at a position higher than an upper surface of the solder resist layer and including any one of nickel, silver and tin.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: April 14, 2020
    Assignee: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventor: Yoshihisa Kanbe
  • Patent number: 10620158
    Abstract: A sensor includes a semiconductor substrate having first pointed nodes extending into a channel from a first side of the channel. Second pointed nodes extend into the channel from a second side of the channel, which is opposite the first side. The second pointed nodes being self-aligned to the first pointed nodes on the opposite side of the channel. The first pointed nodes and the second pointed nodes are connected to a circuit to detect particles in the channel.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qing Cao, Kangguo Cheng, Zhengwen Li, Fei Liu, Zhen Zhang
  • Patent number: 10622394
    Abstract: The image sensing device includes a semiconductor substrate, an interconnection layer, a radiation-sensing region and an isolation structure. The semiconductor substrate has a front surface and a back surface. The interconnection layer is disposed over the front surface of the semiconductor substrate. The radiation-sensing region is disposed in the semiconductor substrate. The isolation structure is disposed on the back surface of the semiconductor substrate. The isolation structure includes a trench and an etch stop layer. The trench extends from the back surface of the semiconductor substrate. The etch stop layer is disposed along the trench. An etch selectivity of a silicon oxide film to the etch stop layer is greater than a predetermined value.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: April 14, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Chuang Wu, Ming-Tsong Wang, Feng-Chi Hung, Ching-Chun Wang, Jen-Cheng Liu, Dun-Nian Yaung
  • Patent number: 10607860
    Abstract: A package structure including a die, a plurality of first conductive connectors, a second conductive connector electrically insulated from the die, a redistribution layer and a conductive shield is provided. The die includes an active surface, a back surface opposite the active surface, and a sidewall coupling the active surface to the back surface. The first conductive connectors are disposed on the active surface of the die and electrically connected to the die. The second conductive connector is disposed on the die and aside the first conductive connectors. The redistribution layer is disposed on the die and electrically connected to the first conductive connectors and the second conductive connector. The conductive shield coupled to the redistribution layer surrounds the second conductive connector and at least a portion of the sidewall. The die is electrically insulated to the conductive shield. A chip package structure is also provided.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: March 31, 2020
    Assignee: Powertech Technology Inc.
    Inventors: Chia-Wei Chiang, Li-Chih Fang, Ji-Cheng Lin, Che-Min Chu, Chun-Te Lin
  • Patent number: 10593751
    Abstract: An object of the present invention is to provide a semiconductor device capable of satisfactorily securing a breakdown voltage not only in a cell region but also in an edge termination region in a super junction structure. A semiconductor device according to the present invention includes a drift region of a first conductivity type and a pillar region of a second conductivity type a RESURF layer formed across a plurality of the pillar regions in an edge termination region and extending in the thickness direction from surfaces of the drift region and the pillar region, and a high-concentration region of the second conductivity type formed in a surface of the RESURF layer, the high-concentration region being higher in impurity concentration than the RESURF layer, no pillar region being formed under the high-concentration region in the thickness direction.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: March 17, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Hamada, Kohei Ebihara
  • Patent number: 10586732
    Abstract: A method includes forming at least a first via in a multilayer structure comprising a first layer and a second layer formed over the first layer, the first via extending from a top of the second layer to a top of a first contact formed in the first layer and forming a polymer film on at least a portion of sidewalls of the first via by etching the top of the first contact using a cleaning process.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: March 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Yann A. M. Mignot, Chih-Chao Yang
  • Patent number: 10578819
    Abstract: A surface light emitting semiconductor laser element, comprises a substrate, a lower reflector including a semiconductor multi-layer disposed on the substrate, an active layer disposed on the lower reflector, an upper reflector including a semiconductor multi-layer disposed on the active layer, a compound semiconductor layer having a first opening for exposing the upper reflector and extending over the upper reflector, and a metal film having a second opening for exposing the upper reflector disposed inside of the first opening and extending over the compound semiconductor layer, wherein the metal film and the compound semiconductor layer constitute a complex refractive index distribution structure where a complex refractive index is changed from the center of the second opening towards the outside. A method of emitting laser light in a single-peak transverse mode is also provided.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: March 3, 2020
    Assignee: Sony Corporation
    Inventors: Yoshiaki Watanabe, Hironobu Narui, Yuichi Kuromizu, Yoshinori Yamauchi, Yoshiyuki Tanaka
  • Patent number: 10573769
    Abstract: A back-illuminated energy ray detecting element 1 includes a semiconductor substrate and a protective film. The semiconductor substrate has a first principal surface as an energy ray incident surface and a second principal surface opposite to the first principal surface, and a charge generating region configured to generate an electric charge according to incidence of an energy ray is disposed on the second principal surface side. The protective film is disposed on the second principal surface side of the semiconductor substrate to cover at least the charge generating region, and includes silicon nitride or silicon nitride oxide. The protective film has a stress alleviating section configured to alleviate stress generated in the protective film.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: February 25, 2020
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Yasuhito Miyazaki, Kentaro Maeta, Masaharu Muramatsu
  • Patent number: 10564356
    Abstract: A heterogeneous semiconductor structure, including a first integrated circuit and a second integrated circuit, the second integrated circuit being a photonic integrated circuit. The heterogeneous semiconductor structure may be fabricated by bonding a multi-layer source die, in a flip-chip manner, to the first integrated circuit, removing the substrate of the source die, and fabricating one or more components on the source die, using etch and/or deposition processes, to form the second integrated circuit. The second integrated circuit may include components fabricated from cubic phase gallium nitride compounds, and configured to operate at wavelengths shorter than 450 nm.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: February 18, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Daniel N. Carothers
  • Patent number: 10566361
    Abstract: A gate structure includes a gate and a first isolation structure having a top surface and a bottom surface. The gate includes a first sidewall adjacent to the first isolation structure, a second sidewall, a first horizontal surface adjacent to a bottom edge of the first sidewall and a bottom edge of the second sidewall, the first horizontal surface being between the top surface of the first isolation structure and the bottom surface of the first isolation structure. The gate also includes a second horizontal surface adjacent to a top edge of the second sidewall. An effective channel width defined by the gate structure includes a height of the second sidewall and a width of the second horizontal surface.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: February 18, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Yu Wei, Fu-Cheng Chang, Hsin-Chi Chen, Ching-Hung Kao, Chia-Pin Cheng, Kuo-Cheng Lee, Hsun-Ying Huang, Yen-Liang Lin
  • Patent number: 10566367
    Abstract: The performances of a semiconductor device are improved. A semiconductor device has a transfer transistor and a photodiode. The photodiode has an n type semiconductor region, an n+ type semiconductor region, and a second p type semiconductor region surrounded by a first p type semiconductor region of an interpixel isolation region. The n+ type semiconductor region is formed on the main surface side of the semiconductor substrate, and the n type semiconductor region is formed under the n+ type semiconductor region via the second p type semiconductor region. In the channel length direction of the transfer transistor, in the n type semiconductor region, an n?? type semiconductor region having a lower impurity density than that of the n type semiconductor region is arranged, to improve the transfer efficiency of electric charges accumulated in the photodiode.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: February 18, 2020
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Yotaro Goto, Takeshi Kamino, Fumitoshi Takahashi
  • Patent number: 10559504
    Abstract: High-mobility semiconductor fins are formed on an insulator layer using techniques allowing precise control of fin heights. Lattice-matched fins are grown epitaxially on sidewalls of an essentially defect-free portion of a semiconductor template. The fins are formed within laterally extending trenches in a top dielectric layer, the thickness of which determines fin height. The trenches extend orthogonally to the template. Epitaxial overgrowth above the top dielectric layer is removed by planarization. The fin template and top dielectric layer are removed, leaving sets of parallel fins on the insulator layer. The fin template can be replaced by an isolation region for electrically isolating sets of fins.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: February 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Xin Miao, Wenyu Xu, Chen Zhang
  • Patent number: 10553782
    Abstract: A passive magnetic device (PMD) has a base electrode, a multi-port signal structure (MPSS), and a substrate therebetween. The MPSS has a central plate residing in a second plane and at least two port tabs spaced apart from one another and extending from the central plate. The substrate has a central portion that defines a mesh structure between the base electrode and the central plate of the multi-port signal structure. A plurality of magnetic pillars are provided within the mesh structure, wherein each of the plurality of the magnetic pillars are spaced apart from one another and surrounded by a corresponding portion of the mesh structure. The PMD may provide a magnetically self-biased device that may be used as a radio frequency (RF) circulator, an RF isolator, and the like.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: February 4, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Andrew Arthur Ketterson, Xing Gu, Yongjie Cui, Xing Chen
  • Patent number: 10553661
    Abstract: A display substrate includes a data line extending in a first direction, a first transistor including a first channel area overlapping the data line and a first control electrode which overlaps the first channel area and has a substantially same shape as that of the first channel area in an overlap area in which the first control electrode overlaps the first channel area, a scan line extending in a second direction crossing the first direction, a first voltage line extending in the first direction and transfers a first driving signal, a first capacitor including an extension electrode which overlaps the first control electrode and extends in the second direction from the first voltage line and a second capacitor including an overlap electrode overlapping the data line.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: February 4, 2020
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Sung-Eun Lee, Jin-Taek Kim, Ki-Wan Ahn, Joo-Sun Yoon, Yong-Jae Jang, Kwang-Young Choi
  • Patent number: 10553577
    Abstract: A layout of a semiconductor device, a semiconductor device and a method of forming the same, the semiconductor device include a first fin and a second fin disposed on a substrate, a gate and a spacer. The first fin and the second fin both include two opposite edges, and the gate completely covers the two opposite edges of the first fin and only covers one sidewall of the two opposite edges of the second fin. The spacer is disposed at two sides of the gate, and the spacer covers another sidewall of the two opposite edges of the second fin.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: February 4, 2020
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Yu-Cheng Tung