Patents Examined by Jeremy C Jones
  • Patent number: 10357830
    Abstract: The method for the production of an element subject to wear, comprising a metal matrix and at least a core of hard material. The method provides a first step in which a temporary aggregation structure is prepared with at least partly open pores, which volatilize or in any case eliminate at least partly when subjected to heating. A second step in which, on the whole internal and external surface of said temporary aggregation structure, a liquid mixture of a binder with metal powders which contain hard elements or their precursors is uniformly distributed. A third step in which the temporary aggregation structure is deteriorated by means of a thermal action of controlled heating, so as to take at least part of the temporary aggregation structure to evaporation, rendering free a volume inside the core, and to consolidate the mixture according to the conformation of the temporary aggregation structure. A fourth step in which the core is disposed in a mold so as to only partly occupy the free volume of the mold.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: July 23, 2019
    Assignee: F.A.R.—Fonderie Acciaierie Roiale—SpA
    Inventors: Alberto Andreussi, Primo Andreussi, Enrico Veneroso, Eddy Pontelli
  • Patent number: 10358708
    Abstract: A steel plate has a chemical composition containing, by mass %, C: 0.03% or more and 0.08% or less, Si: 0.01% or more and 1.0% or less, Mn: 1.2% or more and 3.0% or less, P: 0.015% or less, S: 0.005% or less, Al: 0.08% or less, Nb: 0.005% or more and 0.07% or less, Ti: 0.005% or more and 0.025% or less, N: 0.010% or less, O: 0.005% or less and the balance being Fe and inevitable impurities, a structure being a dual-phase structure consisting of a bainite phase and island martensite, wherein the area fraction of the island martensite is 3% to 15%, the equivalent circle diameter of the island martensite is 3.0 ?m or less, and the remainder of the structure is a bainite phase.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: July 23, 2019
    Assignee: JFE Steel Corporation
    Inventors: Junji Shimamura, Kimihiro Nishimura
  • Patent number: 10357828
    Abstract: The present disclosure generally relates to methods for additive manufacturing (AM) that utilize support leading edge structures in the process of building objects, as well as novel leading edge support structures to be used within these AM processes. The support structure is positioned adjacent the object between the object and a first side of the powder bed. The support structure has a shape that tapers outward in the direction from the first side to the object.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: July 23, 2019
    Assignee: General Electric Company
    Inventors: Zachary David Fieldman, Thomas Sinnett, Daniel Joerger, Neal Dunham
  • Patent number: 10344347
    Abstract: A method of hardening a clothing wire for processing textile fibers and to an apparatus system therefor. The clothing wire has a succession of teeth arranged in its longitudinal direction, and the clothing wire is guided through a heating region in a pass-through direction for contact with at least one open flame. The heating region is followed by a quenching bath having a quenching liquid and by a subsequent tempering apparatus. The clothing wire moving in the pass-through direction is flushed around with a protective medium in a transition region between the region of contact with the open flame and the entry into the quenching liquid.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: July 9, 2019
    Assignee: TRUETZSCHLER GMBH & CO. KG
    Inventor: Friedrich Haarer
  • Patent number: 10344344
    Abstract: The invention relates to a cold-rolled flat steel product which, despite high strength values, has a high level of deformability characterized by a high elongation at break and a good hole expansion ratio ?M. For this purpose the flat steel product is produced from a steel that is composed of (in % by weight) C: 0.12-0.19%, Mn: 1.5-2.5%, Si: >0.60-1.0%, Al: ?0.1%, Cr: 0.2-0.6%, Ti: 0.05-0.15% with the remainder being iron and unavoidable impurities caused by the production process, and which comprises a perlite- and bainite-free structure having 4-20% by vol. martensite, 2-15% by vol. residual austenite, remainder ferrite, an elongation at break A80 of at least 15%, a tensile strength Rm of at least 880 MPa, a yield strength ReL of at least 550 MPa and a hole expansion ratio ?M of more than 6%. The invention also relates to a method which easily enables production of a flat steel product according to the invention.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: July 9, 2019
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Roland Sebald, Dorothea Mattissen, Sigrun Ebest, Stefan Follner
  • Patent number: 10337114
    Abstract: A process for recycling glass from screens deriving from the disposal of cathode-ray tube television sets with quantitative recovery of the lead in metal form, is described.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: July 2, 2019
    Assignee: E.V.H. S.r.l.
    Inventor: Francesco Della Casa
  • Patent number: 10329649
    Abstract: A steel product, such as a strip, plate, sheet, bar or wire, manufactured from austenitic stainless steel. A steel product, wherein: a—the average grain size of the recrystallized austenitic structure of said product is at most 6 , b—less than 50% of the structure of said product is non-recrystallized austenite c—the yield strength (Rpo.2) is at least 350 MPa, d—the tensile strength (Rm) is at least 600 MPa, and e—the uniform elongation (Ag) of said product is at least 5%, depending on the strength. The invention also relates to a method.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: June 25, 2019
    Assignee: SOLU STAINLESS OY
    Inventor: Jouko Leinonen
  • Patent number: 10309000
    Abstract: The present invention relates to a method for preparing an aluminum-copper-iron quasicrystal and silicon carbide mixed reinforced aluminum matrix composite, where the aluminum-copper-iron quasicrystal and silicon carbide mixed reinforced aluminum matrix composite is prepared with an aluminum alloy serving as a matrix and with aluminum-copper-iron quasicrystal and silicon carbide serving as reinforcement agents via smelting in an intermediate-frequency induction melting furnace through the process of intermediate-frequency induction heating, vacuumizing, bottom blowing argon, and casting molding in view of low hardness and low tensile strength of aluminum matrix materials. The prepared aluminum-copper-iron quasicrystal and silicon carbide mixed reinforced aluminum matrix composite has a hardness of 80.3 HB which is improved by 50.64% and tensile strength of 285 Mpa which is improved by 60.42%, and corrosion resistance thereof is improved by 40%.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: June 4, 2019
    Assignee: NORTH UNIVERSITY OF CHINA
    Inventors: Yuhong Zhao, Fenghao Zhang, Hua Hou, Jinzhong Tian, Ling Yang, Yuchun Jin
  • Patent number: 10266927
    Abstract: A spheroidal graphite cast iron alloy comprises, in % by weight, in addition to addition elements, the following elements: Ni between 3.5% and 7%, Cu between 0.5% and 3%, Mo between 0.15% and 1%, the remainder being iron and inevitable impurities. The spheroidal graphite cast iron alloy may be used in manufacturing a part such as cogwheels and gear rims. The method of manufacturing the part may comprise casting a rough casting blank, notably into a mold, and letting the rough casting blank cool in the mold, thus obtaining the part.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: April 23, 2019
    Assignee: FERRY CAPITAIN
    Inventor: Jean-Baptiste Prunier
  • Patent number: 10252338
    Abstract: In S102, after preforming a pressed powder member by compressing metal powder filled in a press-forming portion, the pressed powder member and metal member are slid to each other in S103. In S104, after temporarily joining the pressed powder member and the metal member by further pressurizing the powder member, the temporary joined pressed powder member and the metal member are sintered in a sintering furnace, and the pressed powder member and the metal member are joined by sintering diffusion in S105. Thereby, joining areas between the pressed powder member and the metal member are increased, and it is possible to improve a joining strength between the pressed powder member and the metal member.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: April 9, 2019
    Assignee: DENSO CORPORATION
    Inventors: Eiichi Kobayashi, Kunihiro Kodama, Masashi Totokawa
  • Patent number: 10246758
    Abstract: The invention relates to a method for producing a component from transformable steel by hot forming, in which a plate first is cut out of a strip or sheet as the pre-material, and is then heated to forming temperature and pre-formed, having an at least partially martensitic transformation structure after forming. Instead of a press mold hardening, the at least partially martensitic transformation structure is created in the pre-material, or in the plate to be formed, by austenitization and quenching already before forming, and then the thus-conditioned plate is reheated after forming, while maintaining the at least partially martensitic transformation structure, to a temperature below the Ac1 transformation temperature, and formed at this temperature.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 2, 2019
    Assignee: SALZGITTER FLACHSTAHL GMBH
    Inventors: Friedrich Luther, Thomas Evertz, Stefan Muetze, Michael Braun
  • Patent number: 10239121
    Abstract: A clay-like composition for forming a sintered precious metal body, the clay-like composition containing at least one powder selected from the group consisting of precious metal powders and precious metal alloy powders, an organic binder, an organic additive and water, wherein the clay-like composition has an initial hardness measured using a type E durometer of E8 to E20, and has a hardness after standing for one hour at room temperature of E40 or less.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: March 26, 2019
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Yasuo Ido, Shinji Otani
  • Patent number: 10240220
    Abstract: Embodiments of the present invention comprises melting scrap steel into molten steel; decarburizing the molten steel and adding alloys; transferring the steel to ladles and casting the steel into slabs; hot rolling the slabs into sheets; pickling the sheets; annealing the sheets; cold rolling the sheets; and performing one or more of tension leveling, a rough rolling, or a coating process on the sheets after cold rolling, without an intermediate annealing process between the cold rolling and the tension leveling, the rough rolling, or the coating process. The sheet is sent to the customer for stamping and customer annealing. The new process provides an electrical steel with the similar, same, or better magnetic properties than an electrical steel manufactured using the traditional processing with an intermediate annealing step after cold rolling.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 26, 2019
    Assignee: NUCOR CORPORATION
    Inventors: Theodore E. Hill, Eric E. Gallo
  • Patent number: 10232602
    Abstract: Method for fabricating a three-dimensional object by successive consolidation, layer by layer, of selected regions of a layer of powder, consolidated regions corresponding to successive sections of the three-dimensional object, comprising in order: a—deposit layer of powder onto a support; b—fuse the layer of powder by a first laser energy source so as to obtain a fused layer corresponding to the section of the object and exhibiting a first state of its mechanical properties, c—heat at least a part of the fused layer by a second electron beam energy source to a temperature which follows a controlled variation over time so as to modify the first state of the fused layer and to obtain a consolidated layer with improved mechanical properties, d—repeat the preceding steps until several superposed consolidated layers are formed with improved properties forming the object.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 19, 2019
    Assignees: Compagnie Generale Des Etablissements Michelin, Michelin Recherche Et Technique S.A.
    Inventors: Christophe Bessac, Stephanie Verleene, Frederic Pialot, Gilles Walrand
  • Patent number: 10208372
    Abstract: A grain-oriented electrical steel sheet being a grain-oriented electrical steel sheet containing Si of 0.8 mass % to 7 mass %, Mn of 0.05 mass % to 1 mass %, B of 0.0005 mass % to 0.0080 mass %, each content of Al, C, N, S, and Se of 0.005 mass % or less, and a balance being composed of Fe and inevitable impurities and having a glass coating film made of composite oxide mainly composed of forsterite on the steel sheet surface, in which when glow discharge optical emission spectrometry (GDS) to the surface of a secondary coating film formed on the surface of the glass coating film under a predetermined condition is performed, a peak, of B, in emission intensity having a peak position in emission intensity different from a peak position, of Mg, in emission intensity is obtained and the peak position, of B, in emission intensity from the steel sheet surface is deeper than the peak position, of Mg, in emission intensity.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: February 19, 2019
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Fumiaki Takahashi, Yoshiyuki Ushigami, Kazumi Mizukami, Shuichi Nakamura, Norikazu Fujii, Norihiro Yamamoto, Masahide Urago
  • Patent number: 10196718
    Abstract: The present invention provides a steel strip for cutlery, which has a composition containing, in mass %, 0.45 to 0.55% of C, 0.2 to 1.0% of Si, 0.2 to 1.0% of Mn, and 12 to 14% of Cr, and further contains Mo, with the balance made up of Fe and unavoidable impurities, in which Mo is contained in an amount of 2.1 to 2.8%, and the amount of formed M3C deposited by tempering is decreased to improve bending workability.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: February 5, 2019
    Assignee: Hitachi Metals, Ltd.
    Inventors: Norihide Fukuzawa, Tomonori Ueno, Laura Ming Xu, Charles Samuel White
  • Patent number: 10184162
    Abstract: There is described a process completely performed in aqueous phase, which provides a heat etching of lead glass with aqueous solutions of strong alkali followed by an electrolytic treatment of the suspension so obtained, in order to recover metallic lead and obtain soluble silicates, separated from insoluble silicates, both lead-free. The process also provides for the production of pure silica, derived from the soluble silicates, and a possible use thereof to increase the ratio between silica and sodium oxide, which characterizes the specifications of the soluble silicates. The electrolysis for the recovery of metallic lead is implemented in a cell in which the polarity of the electrodes is periodically reversed, to obtain the detachment of the metallic lead deposited on the cathodes.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: January 22, 2019
    Assignee: Hellatron S.P.A.
    Inventor: Giovanni Modica
  • Patent number: 10150162
    Abstract: An iron-based sintered alloy for sliding member, in which seizure resistance is improved, and a production method therefor, are provided. The iron-based sintered alloy for sliding member consists of, by mass %, 10 to 30% of Cu, 0.2 to 2.0 % of C, 0.03 to 0.9 % of Mn, 0.36 to 3.65% of S, and the balance of Fe and inevitable impurities in the overall composition. The iron-based sintered alloy for sliding member exhibits a metallic structure in which copper phases and pores are dispersed in the matrix that includes mainly a martensite structure and sulfide particles are dispersed in the matrix and the copper phases. The sulfide particles are dispersed at 1 to 30 vol. % with respect to the matrix.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: December 11, 2018
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Hidekazu Tokushima, Hideaki Kawata
  • Patent number: 10106873
    Abstract: A hot-rolled steel sheet including, in terms of % by mass, 0.030% to 0.120% of C, 1.20% or less of Si, 1.00% to 3.00% of Mn, 0.01% to 0.70% of Al, 0.05% to 0.20% of Ti, 0.01% to 0.10% of Nb, 0.020% or less of P, 0.010% or less of S, and 0.005% or less of N, and a balance consisting of Fe and impurities, in which 0.106?(C %-Ti %*12/48-Nb %*12/93)?0.012 is satisfied; a pole density of {112}(110) at a position of ¼ plate thickness is 5.7 or less; an aspect ratio (long axis/short axis) of prior austenite grains is 5.3 or less; a density of (Ti, Nb)C precipitates having a size of 20 nm or less is 109 pieces/mm3 or more; a yield ratio YR, which is the ratio of a tensile strength to a yield stress, is 0.80 or more; and a tensile strength is 590 MPa or more.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: October 23, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Eisaku Sakurada, Kunio Hayashi, Koichi Sato, Shunji Hiwatashi
  • Patent number: 10066308
    Abstract: A method to extract and refine metal products from metal-bearing ores, including a method to extract and refine titanium products. Titanium products can be extracted from titanium-bearing ores with TiO2 and impurity levels unsuitable for conventional methods.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 4, 2018
    Assignee: UNIVERSAL TECHNICAL RESOURCE SERVICES, INC.
    Inventors: James R. Cox, Chanaka L. DeAlwis, Benjamin A. Kohler, Michael G. Lewis