Patents Examined by Jeremy C Jones
  • Patent number: 10058917
    Abstract: Powder metallurgy technology is used to form metallic composites with a uniform distribution of nano-meter size particles within the metallic grains. The uniform distribution of the nano-meter particles is achieved by attaching the nano-meter particles to micron sized particles with surface properties capable of attracting the smaller particles, then blending the decorated particles with micron size metal powder. The blended powder is then powder metallurgy processed into billets that are metal-worked to complete the incorporation and uniform distribution of the nano-meter particles into the metallic composite.
    Type: Grant
    Filed: April 10, 2015
    Date of Patent: August 28, 2018
    Assignee: Gamma Technology, LLC
    Inventors: William C. Harrigan, Jr., Alfred W. Sommer
  • Patent number: 10052188
    Abstract: One embodiment of the invention relates to an implant comprising a base body made of a biocorrodible magnesium alloy. The magnesium alloy contains a plurality of statistically distributed particles, comprising one or more of the elements Y, Zr, Mn, Sc, Fe, Ni, Co, W, Pt and noble earths with the atomic numbers 57 to 71, or the particles comprise alloys or compounds containing one or more of the elements mentioned. The mean distance of the particles from each other is smaller than the hundredfold mean particle diameter.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: August 21, 2018
    Assignee: BIOTRONIK AG
    Inventors: Hermann Kalb, Alexander Rzany, Bodo Gerold
  • Patent number: 10041158
    Abstract: A multi-phase hot-rolled steel sheet having improved strength in an intermediate strain rate region has a chemical composition comprising, in mass percent, C: 0.07-0.2%, Si+Al: 0.3-1.5%, Mn: 1.0-3.0%, P: at most 0.02%, S: at most 0.005%, Cr: 0.1-0.5%, N: 0.001-0.008%, at least one of Ti: 0.002-0.05% and Nb: 0.002-0.05%, and a remainder of Fe and impurities. The area fraction of ferrite is 7-35%, the grain diameter of ferrite is in the range of 0.5-3.0 ?m, and the nanohardness of ferrite is in the range of 3.5-4.5 GPa. A second phase which is the remainder other than ferrite contains martensite and bainitic ferrite and/or bainite. The average nanohardness of the second phase is 5-12 GPa, and the second phase contains a high-hardness phase of 8-12 GPa with an area fraction of 5-35% based on the overall structure.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: August 7, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yasuaki Tanaka, Toshiro Tomida, Kaori Kawano
  • Patent number: 10000827
    Abstract: A method of forming a sintered nickel-titanium-rare earth (Ni—Ti-RE) alloy includes adding one or more powders comprising Ni, Ti, and a rare earth constituent to a powder consolidation unit comprising an electrically conductive die and punch connectable to a power supply. The one or more powders are heated at a ramp rate of about 35° C./min or less to a sintering temperature, and pressure is applied to the powders at the sintering temperature, thereby forming a sintered Ni—Ti-RE alloy.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: June 19, 2018
    Assignee: UNIVERSITY OF LIMERICK
    Inventors: Syed Ansar Md. Tofail, James Butler
  • Patent number: 9972428
    Abstract: Provided is a neodymium-based rare earth permanent magnet having a purity of 99.9 wt % or higher excluding gas components and component elements. The present invention can remarkably improve the magnetic properties in a neodymium-based rare earth permanent magnet by highly purifying the magnetic materials. Furthermore, the present invention aims to provide a high-performance neodymium-based rare earth permanent magnet with improved heat resistance and corrosion resistance, which are inherent drawbacks of magnetic materials.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: May 15, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Yuichiro Shindo
  • Patent number: 9962765
    Abstract: A method of producing a workpiece includes: providing a first powder, with a hardness of the first powder being less than 250 HV, and with a mean particle size of the first powder being less than 20 ?m; mixing the first powder and a second powder to form a mixed powder, with the mixed powder including carbon, chromium, iron, and elements selected from the group consisting of molybdenum, nickel, copper, niobium, vanadium, tungsten, silicon, cobalt, and manganese; adding a binder and water to the mixed powder; applying a spray drying process to granulate the mixed powder to form a spray-dried powder; applying a dry pressing process to the spray-dried powder to form a green part; applying a debinding process to the green part to form a debound body; and sintering the debound body into a workpiece having a hardness of higher than 250 HV.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: May 8, 2018
    Assignee: Taiwan Powder Technologies Co., Ltd.
    Inventors: Kuen-Shyang Hwang, Chi Kin Cheong
  • Patent number: 9920406
    Abstract: A method for manufacturing a high-performance NdFeB rare earth permanent magnetic device which is made of an R—Fe—Co—B-M strip casting alloy, a micro-crystal HR—Fe alloy fiber, and TmGn compound micro-powder, includes steps of: manufacturing the R—Fe—Co—B-M strip casting alloy, manufacturing the micro-crystal HR—Fe alloy fiber, providing hydrogen decrepitating, pre-mixing, powdering with jet milling, post-mixing, providing magnetic field pressing, sintering and ageing, wherein after a sintered NdFeB permanent magnet is manufactured, machining and surface-treating the sintered NdFeB permanent magnet for forming a rare earth permanent device.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: March 20, 2018
    Assignee: SHENYANG GENERAL MAGNETIC CO., LTD
    Inventor: Baoyu Sun