Patents Examined by John A Bodnar
  • Patent number: 11581403
    Abstract: A method includes forming a pad layer and a mask layer over a substrate; patterning the mask layer, the pad layer, and the substrate to form pads, masks, and first and semiconductor fins over the substrate; forming a liner covering the pads, the masks, and the first and second semiconductor fins; removing a first portion of the liner to expose sidewalls of the first semiconductor fin, while leaving a second portion of the liner covering sidewalls of the second semiconductor fin; forming an isolation material over the substrate; and performing a CMP process to the isolation material until a first one of the pads over the second semiconductor fin is exposed; and etching back the isolation material and the second portion of the liner.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tien-Lu Lin, Jung-Hung Chang
  • Patent number: 11581191
    Abstract: A semiconductor device structure and a manufacturing method thereof are provided. The semiconductor device structure includes a semiconductor substrate having an active component region and a non-active component region, a first dielectric layer, a second dielectric layer, high resistivity metal segments, dummy stacked structures and a metal connection structure. The high resistivity metal segments are formed in the second dielectric layer and located in the non-active component region. The dummy stacked structures are located in the non-active component region, and at least one dummy stacked structure penetrates through the first dielectric layer and the second dielectric layer and is located between two adjacent high resistivity metal segments. The metal connection structure is disposed on the second dielectric layer, and the high resistivity metal segments are electrically connected to one another through the metal connection structure.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: February 14, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Ching-Wen Hung
  • Patent number: 11581183
    Abstract: Embodiments described herein provide for post deposition anneal of a substrate, having an amorphous carbon layer deposited thereon, to desirably reduce variations in local stresses thereacross. In one embodiment, a method of processing a substrate includes positioning a substrate, having an amorphous carbon layer deposited thereon, in a first processing volume, flowing an anneal gas into the first processing volume, heating the substrate to an anneal temperature of not more than about 450° C., and maintaining the substrate at the anneal temperature for about 30 seconds or more. Herein, the amorphous carbon layer was deposited on the substrate using a method which included positioning the substrate on a substrate support disposed in a second processing volume, flowing a processing gas into the second processing volume, applying pulsed DC power to a carbon target disposed in the second processing volume, forming a plasma of the processing gas, and depositing the amorphous carbon layer on the substrate.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: February 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Bhargav S. Citla, Mei-Yee Shek, Srinivas D. Nemani
  • Patent number: 11574845
    Abstract: A method of manufacturing a 3D semiconductor device, the method including forming a first target structure, the first target structure including at least one upper gate, at least one bottom gate, and a dielectric separation layer disposed between and separating the at least one upper gate and the at least one bottom gate; removing material in a plurality of material removal areas in the first target structure, the plurality of material removal areas including at least one material removal area that extends through the at least one upper gate to a top of the dielectric separation layer; and forming a first contact establishing a first electrical connection to the upper gate and a second contact establishing a second electrical connection to the at least one bottom gate, such that the first contact and second contact are independent of each other.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: February 7, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Daniel Chanemougame, Lars Liebmann, Jeffrey Smith, Anton deVilliers
  • Patent number: 11575005
    Abstract: An integrated circuit structure includes: a semiconductor nanowire extending in a length direction and including a body portion; a gate dielectric surrounding the body portion; a gate electrode insulated from the body portion by the gate dielectric; a semiconductor source portion adjacent to a first side of the body portion; and a semiconductor drain portion adjacent to a second side of the body portion opposite the first side, the narrowest dimension of the second side of the body portion being smaller than the narrowest dimension of the first side. In an embodiment, the nanowire has a conical tapering. In an embodiment, the gate electrode extends along the body portion in the length direction to the source portion, but not to the drain portion. In an embodiment, the drain portion at the second side of the body portion has a lower dopant concentration than the source portion at the first side.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: February 7, 2023
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Dipanjan Basu, Ashish Agrawal, Benjamin Chu-Kung, Siddharth Chouksey, Cory C. Bomberger, Tahir Ghani, Anand S. Murthy, Jack T. Kavalieros
  • Patent number: 11574995
    Abstract: A method forms a first voltage node of a high voltage component of a microelectronic device. The method also forms a plurality of dielectric layers. The method also forms a second voltage node of the high voltage component of the microelectronic device in a fourth position such that the plurality of dielectric layers is between the first voltage node and the second voltage node. During the forming a second voltage node step, a portion of a third layer in the plurality of dielectric layers, in a region outwardly positioned relative to the second voltage node, is removed to expose the second layer, in the plurality of dielectric layers, in the region.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: February 7, 2023
    Assignee: Texas Instmments Incorporated
    Inventor: Jeffrey Alan West
  • Patent number: 11569133
    Abstract: A semiconductor device includes a fin-shaped structure on a substrate, a gate structure on the fin-shaped structure and an interlayer dielectric (ILD) layer around the gate structure, and a single diffusion break (SDB) structure in the ILD layer and the fin-shaped structure. Preferably, the SDB structure includes a bottom portion and a top portion on the bottom portion, in which the top portion and the bottom portion include different widths.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: January 31, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ching-Ling Lin, Wen-An Liang, Chen-Ming Huang
  • Patent number: 11557682
    Abstract: A low turn-on voltage GaN diode having an anode metal with a consistent crystal orientation and a preparation method thereof. The low turn-on voltage GaN diode having an anode metal with a consistent crystal orientation provided by the present disclosure includes a substrate layer, a GaN buffer layer, a GaN channel layer and an AlGaN barrier layer, which are arranged in sequence from bottom to top; a cathode arranged on the AlGaN barrier layer; a groove arranged in the GaN channel layer and the AlGaN barrier layer, and an anode provided on a bottom and a side wall of the groove and part of the AlGaN barrier layer; a dielectric layer provided on an uncovered portion of the AlGaN barrier layer; wherein, a contact portion of the anode with the groove and the AlGaN barrier layer is W or Mo metal with a crystal orientation of <100>.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: January 17, 2023
    Assignee: XIDIAN UNIVERSITY
    Inventors: Jing Ning, Chi Zhang, Jincheng Zhang, Boyu Wang, Dong Wang, Peijun Ma, Yue Hao
  • Patent number: 11557747
    Abstract: A display device includes a substrate and a plurality of first light-emitting elements having a microcavity structure on the substrate. Each of the plurality of first light-emitting elements includes a first light-emitting film and a first upper electrode and a first lower electrode sandwiching the first light-emitting film. The peak wavelength of an emission spectrum of the first light-emitting film is in a wavelength range where the luminosity curve slopes negatively. Within a wavelength range where the peak wavelength of a multiple interference spectrum caused by the microcavity structure varies when the viewing angle varies from 0° to 60°, the luminosity curve slopes negatively, and the emission spectrum slopes positively.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: January 17, 2023
    Assignees: WUHAN TIANMA MICRO-ELECTRONICS CO., LTD., TIANMA JAPAN, LTD.
    Inventors: Shigeru Mori, Keita Hamada
  • Patent number: 11545486
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to an integrated thin film resistor with a metal-insulator-metal capacitor and methods of manufacture. The structure includes: a first buffer contact on a substrate; a second buffer contact on the substrate, the second buffer contact being on a same wiring level as the first buffer contact; a resistive film contacting the first buffer contact and the second buffer contact, the resistive film extending on the substrate between the first buffer contact and the second buffer contact; and electrical contacts landing on both the first buffer contact and the second buffer contact, but not directly contacting with the resistive film.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: January 3, 2023
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Chengang Feng, Yanxia Shao, Yudi Setiawan, Handoko Linewih, Xuesong Rao
  • Patent number: 11542151
    Abstract: The present disclosure relates to a microelectromechanical systems (MEMS) apparatus. The MEMS apparatus includes a base substrate and a conductive routing layer disposed over the base substrate. A bump feature is disposed directly over the conductive routing layer. Opposing outermost sidewalls of the bump feature are laterally between outermost sidewalls of the conductive routing layer. A MEMS substrate is bonded to the base substrate and includes a MEMS device directly over the bump feature. An anti-stiction layer is arranged on one or more of the bump feature and the MEMS device.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Sung Chang, Fei-Lung Lai, Shang-Ying Tsai, Cheng Yu Hsieh
  • Patent number: 11545546
    Abstract: In an embodiment, a device includes: a first source/drain region; a second source/drain region; an inter-layer dielectric (ILD) layer over the first source/drain region and the second source/drain region; a first source/drain contact extending through the ILD layer, the first source/drain contact connected to the first source/drain region; a second source/drain contact extending through the ILD layer, the second source/drain contact connected to the second source/drain region; and an isolation feature between the first source/drain contact and the second source/drain contact, the isolation feature including a dielectric liner and a void, the dielectric liner surrounding the void.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: January 3, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Guan-Ren Wang, Ching-Feng Fu
  • Patent number: 11538720
    Abstract: A semiconductor device includes a first stack of nanowires above a substrate with a first gate structure over, around, and between the first stack of nanowires and a second stack of nanowires above the substrate with a second gate structure over, around, and between the second stack of nanowires. The device also includes a first source/drain region contacting a first number of nanowires of the first nanowire stack and a second source/drain region contacting a second number of nanowires of the second nanowire stack such that the first number and second number of contacted nanowires are different.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: December 27, 2022
    Assignee: TESSERA LLC
    Inventors: Kangguo Cheng, Lawrence A. Clevenger, Balasubramanian S. Pranatharthiharan, John Zhang
  • Patent number: 11532696
    Abstract: Semiconductor devices including a capacitor and methods of forming the same are provided. The semiconductor devices may include a capacitor that include a lower electrode, an upper electrode on the lower electrode, and a dielectric layer extending between the lower electrode and the upper electrode. The lower electrode may include a doped region that contacts the dielectric layer, and the doped region of the lower electrode is configured to increase a capacitance of the capacitor.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: December 20, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gihee Cho, Jungoo Kang, Sangyeol Kang, Hyunsuk Lee
  • Patent number: 11527610
    Abstract: An integrated circuit structure comprises a silicon substrate and a III-nitride (III-N) substrate over the silicon substrate. A first III-N transistor and a second III-N transistor is on the III-N substrate. An insulator structure is formed in the III-N substrate between the first III-N transistor and the second III-N, wherein the insulator structure comprises one of: a shallow trench filled with an oxide, nitride or low-K dielectric; or a first gap adjacent to the first III-N transistor and a second gap adjacent to the second III-N transistor.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: December 13, 2022
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then
  • Patent number: 11522518
    Abstract: Disclosed is a device that includes a crystalline substrate and a patterned aluminum-based material layer disposed onto the crystalline substrate. The patterned aluminum-based material layer has a titanium-alloyed surface. A titanium-based material layer is disposed over select portions of the titanium-alloyed surface. In an exemplary embodiment, the patterned aluminum-based material layer forms a pair of interdigitated transducers to provide a surface wave acoustic (SAW) device. The SAW device of the present disclosure is usable to realize SAW-based filters for wireless communication equipment.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: December 6, 2022
    Assignee: Qorvo US, Inc.
    Inventors: Casey Kirkpatrick, Andrew P. Ritenour
  • Patent number: 11515148
    Abstract: Method for producing a semiconductor device, including: producing, on a first region of a surface layer comprising a first semiconductor and disposed on a buried dielectric layer, a layer of a second compressive strained semiconductor along a first direction; etching a trench through the layer of the second semiconductor forming an edge of a portion of the layer of the second semiconductor oriented perpendicularly to the first direction, and wherein the bottom wall is formed by the surface layer; thermal oxidation forming in the surface layer a semiconductor compressive strained portion along the first direction and forming in the trench an oxide portion; producing, through the surface layer and/or the oxide portion, and through the buried dielectric layer, dielectric isolation portions around an assembly formed of the compressive strained semiconductor portion and the oxide portion; and wherein the first semiconductor is silicon, the second semiconductor is SiGe, and said at least one compressive strained
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: November 29, 2022
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Loic Gaben, Cyrille Le Royer, Fabrice Nemouchi, Nicolas Posseme, Shay Reboh
  • Patent number: 11508735
    Abstract: A semiconductor device includes a first Static Random Access Memory (SRAM) array including a first SRAM cell and a second SRAM array including a second SRAM cell. The first SRAM cell includes a first pull-down (PD) device including a single fin N-type FinFET. The single fin N-type FinFET includes a first gate dielectric having a first thickness. The second SRAM cell includes a second PD device including a multiple fin N-type FinFET. The multiple fin N-type FinFET includes a second gate dielectric having a second thickness. The first thickness is greater than the second thickness.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jhon Jhy Liaw
  • Patent number: 11508575
    Abstract: A method of fan-out processing includes providing or obtaining a fused glass laminate sheet or wafer having a core layer and a first clad layer and a second clad layer, the core layer comprising a core glass having a core glass coefficient of thermal expansion ?core, the first clad layer and the second clad layer each comprising a clad glass having a clad glass coefficient of thermal expansion ?clad, where ?clad>?core; affixing integrated circuit devices to the second clad layer of the laminate sheet or wafer; forming a fan-out layer on or above the integrated circuit devices; and removing some of the first clad layer to decrease warp of the sheet or wafer with integrated circuit devices and a fan-out layer thereon. A method of producing a laminate sheet or wafer having a selected CTE is also disclosed.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: November 22, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Jin Su Kim, Yu Xiao
  • Patent number: 11495657
    Abstract: A process is provided for forming a thin film resistor (TFR) in an integrated circuit (IC) device. A TFR film is formed and annealed over an IC structure including IC elements and IC element contacts. An oxide cap is formed over the TFR film, which acts as a hardmask during a TFR etch of the TFR film to define a TFR element, which may eliminate the use of a photomask and thereby eliminate post-etch removal of photomask polymer. TFR edge spacers may be formed over lateral edges of the TFR element to insulate such TFR element edges. TFR contact openings are etched in the oxide cap over the TFR element, and a metal layer is formed over the IC structure and extending into the TFR contact openings to form metal contacts to the IC element contacts and the TFR element.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: November 8, 2022
    Assignee: Microchip Technology Incorporated
    Inventors: Paul Fest, Jacob Williams, Josh Kaufman, Greg Dix