Patents Examined by Jonathan C Langman
  • Patent number: 10295707
    Abstract: A coated metal fluoride optic is provided. The coated metal fluoride optic includes an alkaline earth metal fluoride substrate and a coating disposed on at least one surface of the substrate. The coating includes an adhesion layer comprising a fluoride-containing material, a non-densified intermediate layer deposited on the adhesion layer, and a densified capping layer deposited on the intermediate layer.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: May 21, 2019
    Assignee: Corning Incorporated
    Inventors: Gerald Philip Cox, Michael Joseph D'lallo, Jean-Francois Oudard, Jue Wang
  • Patent number: 10287204
    Abstract: The present invention relates to pellets for use in the manufacture of glass.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: May 14, 2019
    Assignee: Sibelco UK Ltd.
    Inventors: Samuel Mark Leese, John Alexander Stuart
  • Patent number: 10287703
    Abstract: A substrate characterised in that it is at least partially surface-coated with a coating containing at least one so-called “barrier” layer having silica and one or more material(s) X selected from among SiC, Si, Si3N4, in which layer the amount of X varies between 25-wt. % and 50.-wt. % in relation to the total weight of the barrier layer, the barrier layer being formed by grains of one or more materials X covered at least partially in a silica shell, and the barrier layer being in direct contact with the substrate.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: May 14, 2019
    Assignee: COMMISSARIAT À L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Jean-Paul Garandet, Denis Camel, Béatrice Drevet, Nicolas Eustathopoulos, Charles Huguet, Johann Testard, Rayisa Voytovych
  • Patent number: 10283351
    Abstract: A single-crystal silicon carbide substrate has a main surface having a surface roughness fulfilling Ra?1 nm, and has a ratio of hidden scratches of less than 50%, where, in the case where the main surface is arbitrary observed at 50 or more observation points with a field of view having a diameter of 100 ?m, the ratio of hidden scratches is defined by a value obtained by dividing the number of the observation points at which a striped hidden scratch having a length of at least 50 ?m by the total number of the observation points.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 7, 2019
    Assignee: HITACHI METALS, LTD.
    Inventors: Taisuke Hirooka, Hiroyuki Okuda
  • Patent number: 10240252
    Abstract: The purpose of quartz homeotypes grown epitaxially on beta quartz for use in pressure sensors or accelerometers is to be able to drastically cut down production costs on otherwise expensive or time-consuming to grow crystals that are necessary in various industrial applications. This is done via epitaxial growth of quartz homeotypes across the whole surface of a sample of beta quartz, an easily accessible and high temperature capable crystal. This invention also applies to the epitaxial application of piezoelectric material atop a piezoelectric crystal for the purpose of altering its piezoelectric coefficient and the epitaxial application of a piezoelectric crystal atop a host crystal for the purpose of increasing its insulation resistance.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: March 26, 2019
    Inventor: Daniel Smith
  • Patent number: 10233760
    Abstract: A coating including a CMAS-resistant layer with a rare earth oxide. The CMAS-resistant layer is essentially free of zirconia and hafnia, and may further include at least one of alumina, silica, and combinations thereof.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: March 19, 2019
    Assignee: Rolls-Royce Corporation
    Inventor: Kang N. Lee
  • Patent number: 10214457
    Abstract: A composition is provided that includes a silicon-containing material (e.g., a silicon metal and/or a silicide) and about 0.001% to about 85% of a Ga-containing compound, an In-containing compound, or a mixture thereof. The silicon-based layer can be a bond coating directly on the surface of the substrate. Alternatively or additionally, the silicon-based layer can be an outer layer defining a surface of the substrate, with an environmental barrier coating on the surface of the substrate. A coated component is also provided, as well as a method for coating a ceramic component. Gas turbine engines are also provided that include such a ceramic component.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: February 26, 2019
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Julin Wan
  • Patent number: 10214456
    Abstract: A composition is generally provided that includes a silicon-containing material (e.g., silicon metal and/or a silicide) and a boron-doped refractory compound, such as about 0.001% to about 85% by volume of the boron-doped refractory compound (e.g., about 1% to about 60% by volume). In one embodiment, a bond coating on a surface of a ceramic component is generally provided with the bond coating including such a composition, with the silicon-containing material is silicon metal.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: February 26, 2019
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Julin Wan
  • Patent number: 10214818
    Abstract: The present invention concerns anti-corrosive coating compositions, in particular coating compositions for protecting iron and steel structures. In particular, the present invention relates to silicate-based coating compositions comprising particulate zinc, conductive pigments, and glass hollow microspheres. The invention furthermore concerns a kit of parts containing the composition, a method for its application, as well as metal structures coated with the composition.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: February 26, 2019
    Assignee: HEMPEL A/S
    Inventors: Santiago Arias Codolar, Salvador Colominas Tutusaus, Tomás Alhambra Redondo, Rubèn Palomo Ribell
  • Patent number: 10145252
    Abstract: Coating systems on a surface of a CMC component, such as a CMC shroud, are provided. The coating system can include an environmental barrier coating on the surface of the CMC component and an abradable coating on the environmental barrier coating and defining an external surface opposite of the environmental barrier coating. The abradable coating includes a compound having the formula: Ln2ABO8, where Ln comprises scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, or mixtures thereof; A comprises Si, Ti, Ge, or a combination thereof; and B comprises Mo, W, or a combination thereof. In one embodiment, the abradable coating has a first coefficient of thermal expansion at an interface with the environmental barrier coating that changes to a second coefficient of thermal expansion at its external surface. Methods are also provided for applying an abradable coating onto a CMC component.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: December 4, 2018
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Paul Stephen Manicke
  • Patent number: 10145629
    Abstract: The present disclosure is directed to a metal-containing apparatus including a substrate member constructed of a metal that is highly resistant to pitting corrosion and wear in aggressive media. An exemplary metal-containing apparatus is a plate heat exchanger. The metal includes an oxidation layer on the surface thereof and a thin metal oxide nanoporous film on top of the oxidation layer. The nanoporous film is highly compliant and is comprised of oxygen and aluminum, titanium, silicon, zirconium and combinations thereof.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: December 4, 2018
    Assignee: Wisconson Alumni Research Foundation
    Inventors: Marc A. Anderson, M. Isabel Tejedor, Ole Christensen
  • Patent number: 10145026
    Abstract: Methods for large-scale manufacturing of semipolar gallium nitride boules are disclosed. The disclosed methods comprise suspending large-area single crystal seed plates in a rack, placing the rack in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and growing crystals ammonothermally. A bi-faceted growth morphology may be maintained to facilitate fabrication of large area semipolar wafers without growing thick boules.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: December 4, 2018
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Mark P. D'Evelyn, Dirk Ehrentraut, Derrick S. Kamber, Bradley C. Downey
  • Patent number: 10138740
    Abstract: A ceramic component is generally provided that includes a silicon-based layer comprising a silicon-containing material (e.g., a silicon metal and/or a silicide) and about 0.001% to about 85% of a Ga-containing compound. For example, the silicon-based layer can be a bond coating directly on the surface of the substrate. Alternatively or additionally, the silicon-based layer can be an outer layer defining a surface of the substrate, with an environmental barrier coating on the surface of the substrate. Gas turbine engines are also generally provided that include such a ceramic component.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: November 27, 2018
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Julin Wan
  • Patent number: 10141180
    Abstract: A silicon wafer is manufactured by subjecting a silicon wafer sliced from a silicon single-crystal ingot grown by the Czochralski process to a rapid thermal process in which the silicon wafer is heated to a maximum temperature within a range of 1300 to 1380° C., and kept at the maximum temperature for 5 to 60 seconds; and removing a surface layer of the wafer where a semiconductor device is to be manufactured by a thickness of not less X [?m] which is calculated according to the below equations (1) to (3): X [?m]=a [?m]+b [?m]??(1); a [?m]=(0.0031×(said maximum temperature) [° C.]?3.1)×6.4×(cooling rate)?0.4 [° C./second]??(2); and b [?m]=a/(solid solubility limit of oxygen) [atoms/cm3]/(oxygen concentration in substrate) [atoms/cm3]??(3).
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: November 27, 2018
    Assignee: GLOBALWAFERS JAPAN CO., LTD.
    Inventors: Koji Araki, Tatsuhiko Aoki, Haruo Sudo, Takeshi Senda
  • Patent number: 10124558
    Abstract: Provided are a thermal expansion suppressing member having negative thermal expansion properties and a metal-based anti-thermally-expansive member having small thermal expansion. More specifically, provided are a thermal expansion suppressing member, including at least an oxide represented by the following general formula (1), and an anti-thermally-expansive member, including a metal having a positive linear expansion coefficient at 20° C., and a solid body including at least an oxide represented by the following general formula (1), the metal and solid being joined to each other: (Bi1-xMx)NiO3 (1) where M represents at least one metal selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, and In; and x represents a numerical value of 0.02?x?0.15.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: November 13, 2018
    Assignees: KYOTO UNIVERSITY, CANON KABUSHIKI KAISHA
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Yoshihiko Matsumura, Yuichi Shimakawa, Masaki Azuma
  • Patent number: 10121565
    Abstract: A nanoparticle multilayer thin film is provided in which nanoparticles which are not electrically insulated from each other are spaced apart from one another at a reduced distance. The nanoparticle multilayer film includes: at least one first nanoparticle layer including first nanoparticles that are surface-modified with a cationic metal-chalcogenide compound; and at least one second nanoparticle layer including second nanoparticles that are surface-modified with an anionic metal-chalcogenide compound, wherein the first nanoparticle layer and the second nanoparticle layer are alternately stacked upon one another.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: November 6, 2018
    Assignees: SAMSUNG ELECTRONICS CO., LTD., AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION
    Inventors: Kyungsang Cho, Sangwook Kim, Donghyeok Choi
  • Patent number: 10115887
    Abstract: An aspect of the present invention relates to ferroelectric ceramics including a stacked film formed on a Si substrate, a Pt film formed on the stacked film, a SrTiO3 film formed on the Pt film, and a PZT film formed on the SrTiO3, wherein the stacked film is formed by repeating sequentially N times a first ZrO2 film and a Y2O3 film, and a second ZrO2 film is formed on the film formed repeatedly N times, the N being an integer of 1 or more. It is preferable that a ratio of Y/(Zr+Y) of the stacked film is 30% or less.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: October 30, 2018
    Assignee: ADVANCED MATERIAL TECHNOLOGIES, INC.
    Inventors: Takeshi Kijima, Yuuji Honda, Yukinori Tani
  • Patent number: 10107137
    Abstract: A turbine engine, an engine structure, and a method of forming an engine structure are provided herein. In an embodiment, an engine structure includes a metal substrate, a thermal barrier coating layer, and a metal silicate protective layer. The thermal barrier coating layer overlies the metal substrate, and the thermal barrier coating layer has columnar grains with gaps defined between the columnar grains. The metal silicate protective layer is formed over the thermal barrier coating layer, and the metal silicate protective layer covers the columnar grains and the gaps between the columnar grains.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: October 23, 2018
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Vladimir K. Tolpygo, Wil Baker
  • Patent number: 10103021
    Abstract: A thermally oxidized heterogeneous composite substrate provided with a single crystal silicon film on a handle substrate, said heterogeneous composite substrate being obtained by, prior to a thermal oxidization treatment at a temperature exceeding 850° C., conducting an intermediate heat treatment at 650-850° C. and then conducting the thermal oxidization treatment at a temperature exceeding 850° C. According to the present invention, a thermally oxidized heterogeneous composite substrate with a reduced number of defects after thermal oxidization can be obtained.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: October 16, 2018
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shoji Akiyama, Yuji Tobisaka, Kazutoshi Nagata
  • Patent number: 10094237
    Abstract: Environmental barrier coatings for high temperature ceramic components including a bond coat layer; an optional silica layer; and at least one transition layer including: from about 85% to about 100% by volume of the transition layer of a primary transition material including a rare earth disilicate, or a doped rare earth disilicate; and from 0% to about 15% by volume of the transition layer of a secondary material selected from Fe2O3, iron silicates, rare earth iron oxides, Al2O3, mullite, rare earth aluminates, rare earth aluminosilicates, TiO2, rare earth titanates, Ga2O3, rare earth gallates, NiO, nickel silicates, rare earth nickel oxides, Lnb metals, Lnb2O3, Lnb2Si2O7, Lnb2SiO5, borosilicate glass, alkaline earth silicates, alkaline earth rare earth oxides, alkaline earth rare earth silicates, and mixtures thereof; where the transition layer is applied to the component as a slurry including at least an organic solvent, the primary transition material and at least one slurry sintering aid, and where a re
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: October 9, 2018
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell