Patents Examined by Jonathan Langman
  • Patent number: 8722196
    Abstract: Proposed are a composite material having a high adhesiveness, wherein non-penetrating pores that are formed in a silicone surface layer are filled up with a metal or the like without leaving any voids by using the plating technique and the silicone surface layer is coated with the metal or the like, and a method of producing the composite material. A composite material, which has a high adhesiveness between a second metal or an alloy of the second metal (106a, 106b) and a silicone surface, can be obtained by filling up non-penetrating pores that are formed in the surface of a silicone substrate (100) substantially with a second metal or an alloy of the second metal (106a) with the use of the autocatalytic electroless plating technique wherein a first metal located at the bottom of the non-penetrating pores as described above serves as the starting point, and coating the surface of the silicone substrate (100) with the second metal (106b).
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: May 13, 2014
    Assignee: Japan Science and Technology Agency
    Inventors: Shinji Yae, Tatsuya Hirano, Hitoshi Matsuda
  • Patent number: 8715839
    Abstract: An electrical component provides a ceramic element located on or in a dielectric substrate between and in contact with a pair of electrical conductors, wherein the ceramic element includes one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.5 mol % throughout the ceramic element. A method of fabricating an electrical component, provides or forming a ceramic element between and in contact with a pair of electrical conductors on a substrate including depositing a mixture of metalorganic precursors and causing simultaneous decomposition of the metal oxide precursors to form the ceramic element including one or more metal oxides.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 6, 2014
    Inventor: L. Pierre de Rochemont
  • Patent number: 8703294
    Abstract: The present invention provides a functionally graded bioactive glass/ceramic composite structure or bioactive glass/ceramic/bioactive glass sandwich structure for use in such applications as damage resistant, ceramic dental implants, immediate tooth replacement, endodontic posts, orthopedic prostheses, orthopedic stems, bone substitutes, bone screws, plates, and anchors, nonunion defects repair, alveolar ridge augmentation, missing small bone parts (e.g. fingers, toes, etc), maxilla facial reconstruction, spinal fusion, and scaffolds for bone regeneration, comprising a residual bioactive glass or glass-ceramic layer at all accessible surfaces, followed by an underlying graded glass-ceramic layer, and then an dense interior ceramic. Further, the invention provides methods for making the same structure.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: April 22, 2014
    Assignee: New York University
    Inventors: Yu Zhang, Racquel Legeros, Jae-Won Kim
  • Patent number: 8697024
    Abstract: A precursor formulation of a silicon carbide material that includes a ceramic material and a boron-11 compound. The ceramic material may include silicon and carbon and, optionally, oxygen, nitrogen, titanium, zirconium, aluminum, or mixtures thereof. The boron-11 compound may be a boron-11 isotope of boron oxide, boron hydride, boron hydroxide, boron carbide, boron nitride, boron trichloride, boron trifluoride, boron metal, or mixtures thereof. A material for use in a nuclear reactor component is also disclosed, as are such components, as well as a method of producing the material.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 15, 2014
    Assignee: COI Ceramics, Inc.
    Inventors: Timothy E. Easler, Andrew Szweda, Eric Stein
  • Patent number: 8685545
    Abstract: A system of layers in a protective coating (20) for a substrate (22), including at least an outer thermal barrier layer (32) and a tungsten bronze structure ceramic underlayer (30) that reduces spalling of the outer layer. The range of materials for the underlayer includes ceramics of the form Ba6?3mRe8+2mTi18O54, where 0<m<1.5, and Re is any rare earth element or mixture thereof. These underlayer materials reduce spalling of the thermal barrier layer, and thus extend the life of the coating system. In some embodiments, materials for the outer thermal barrier layer may include Yttria-stabilized Zirconia (YSZ) or ceramics with lower thermal conductivity than YSZ. A segmented YSZ layer (26) is provided in some embodiments for additional thermal expansion compliance.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 1, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: David B. Allen, Anand A. Kulkarni
  • Patent number: 8673450
    Abstract: The problem of the present invention is to provide, in high current-low energy type ion implantation apparatuses, a graphite member for a beam line inner member of an ion implantation apparatus, which graphite member can markedly reduce particles incorporated in a wafer surface. This problem can be solved by the graphite member of the present invention, which is a graphite member for a beam line inner member of an ion implantation apparatus, which member having a bulk density of not less than 1.80 Mg/m3 and an electric resistivity of not more than 9.5 ??·m. Preferably, the R value obtained by dividing D band intensity at 1370 cm?1 by G band intensity at 1570 cm?1 in the Raman spectrum of a spontaneous fracture surface of the graphite member is not more than 0.20.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: March 18, 2014
    Assignee: Toyo Tanso Co., Ltd.
    Inventors: Kiyoshi Saito, Fumiaki Yokoyama, Hitoshi Suzuki, Atsuko Ando, Tetsuro Tojo, Seiji Shinohara
  • Patent number: 8658255
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability involving providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Patent number: 8658291
    Abstract: Calcium magnesium aluminosilicate (CMAS) mitigation compositions selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof when the CMAS mitigation composition is included as a separate CMAS mitigation layer in an environmental barrier coating for a high temperature substrate component.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Patent number: 8653156
    Abstract: Disclosed is a composite material having the appearance of natural stone that made from a polymer and natural aggregate. The composite material also has an antimicrobial material incorporated into it that resists the proliferation of microbes on the surface of the material. A method for producing this material is also disclosed.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: February 18, 2014
    Assignee: Consentino, S.A.
    Inventors: Ivan W. Ong, Gerald W. Walter
  • Patent number: 8652658
    Abstract: A method and apparatus for the production of C-plane single crystal sapphire is disclosed. The method and apparatus may use edge defined film-fed growth techniques for the production of single crystal material exhibiting low polycrystallinity and/or low dislocation density.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: February 18, 2014
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Vitali Tatartchenko, Christopher D. Jones, Steven Anthony Zanella, John W. Locher, Fery Pranadi
  • Patent number: 8647982
    Abstract: A method of activating a metal structure on an intermediate semiconductor device structure toward metal plating. The method comprises providing an intermediate semiconductor device structure comprising at least one first metal structure and at least one second metal structure on a semiconductor substrate. The at least one first metal structure comprises at least one aluminum structure, at least one copper structure, or at least one structure comprising a mixture of aluminum and copper and the at least one second metal structure comprises at least one tungsten structure. One of the at least one first metal structure and the at least one second metal structure is activated toward metal plating without activating the other of the at least one first metal structure and the at least one second metal structure. An intermediate semiconductor device structure is also disclosed.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: February 11, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, James M. Wark, William M. Hiatt
  • Patent number: 8647747
    Abstract: Provided is a hybrid silicon wafer in which molten state polycrystalline silicon and solid state single-crystal silicon are mutually integrated, comprising fine crystals having an average crystal grain size of 8 mm or less at a polycrystalline portion within 10 mm from a boundary with a single-crystal portion. Additionally provided is a method of manufacturing a hybrid silicon wafer, wherein a columnar single-crystal silicon ingot is sent in a mold in advance, molten silicon is cast around and integrated with the single-crystal ingot to prepare an ingot complex of single-crystal silicon and polycrystalline silicon, and a wafer shape is cut out therefrom. The provided hybrid silicon wafer comprises the functions of both a polycrystalline silicon wafer and a single-crystal wafer.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: February 11, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Hiroshi Takamura, Ryo Suzuki
  • Patent number: 8642187
    Abstract: A structural member for a manufacturing apparatus has a metal base member mainly composed of aluminum, a high-purity aluminum film formed on the surface of the metal base member, and a nonporous amorphous aluminum oxide passivation film which is formed by anodizing the high-purity aluminum film. A method for producing a structural member for a manufacturing apparatus, includes forming a high-purity aluminum film on the surface of a metal base member mainly composed of aluminum, and anodizing the high-purity aluminum film in a chemical conversion liquid having a pH of 4-10 and containing a nonaqueous solvent, which has a dielectric constant lower than that of water and dissolves water, thereby converting at least a surface portion of the high-purity aluminum film into a nonporous amorphous aluminum oxide passivation film.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 4, 2014
    Assignees: National University Corporation Tohoku University, Mitsubishi Chemical Corporation
    Inventors: Tadahiro Ohmi, Minoru Tahara, Yasuhiro Kawase
  • Patent number: 8632894
    Abstract: A substrate for an electronic device having high carrier transport ability, a method for manufacturing a substrate for an electronic device which can manufacture such a substrate for an electronic device, an electronic device provided with the substrate for an electronic device and having improved properties, and electronic equipment having high reliability are provided. A substrate for an electronic device includes a light emitting layer (organic semiconductor layer), a cathode (inorganic layer), and an intermediate layer provided between the light emitting layer and the cathode so as to make contact with both of the light emitting layer and the cathode. The intermediate layer is constituted of a compound (1) represented by a general formula R—X—O-M as a main component thereof. In the general formula, the R is a hydrocarbon group, the X is any one of binding groups comprising a single bond, a carbonyl group and a sulfonyl group, and the M is any one of a hydrogen atom and a metal atom.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: January 21, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Masamitsu Uehara
  • Patent number: 8603637
    Abstract: A coated article is described. The coated article includes a substrate, a combining layer formed on the substrate, a plurality of silicon dioxide layers and a plurality of copper-zinc alloy layers formed on the combining layer. The combining layer is a silicon layer. Each silicon dioxide layer interleaves with one copper-zinc alloy layer. A method for making the coated article is also described.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: December 10, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Cong Li
  • Patent number: 8592058
    Abstract: Embodiments of the current invention include methods of forming a strontium titanate (SrTiO3) film using atomic layer deposition (ALD). More particularly, the method includes forming a plurality of titanium oxide (TiO2) unit films using ALD and forming a plurality of strontium oxide (SrO) unit films using ALD. The combined thickness of the TiO2 and SrO unit films is less than approximately 5 angstroms. The TiO2 and SrO units films are then annealed to form a strontium titanate layer.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: November 26, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Laura M. Matz, Xiangxin Rui, Xinjian Lei, Sunil Shanker, Moo-Sung Kim, Iain Buchanan
  • Patent number: 8580372
    Abstract: The present invention provides an optical film comprising a substrate having a first optical surface and a second surface and a micro structure layer on the first optical surface of the substrate, wherein the micro structure layer comprises a plurality of first light-adjusting structures selected from the group consisting of prism columnar structures, conical columnar structures, solid angle structures and orange-segment like structures and a combination thereof and a plurality of second light-adjusting structures selected from the group consisting of arc columnar structures, lens-like structures, and capsule-like structures and a combination thereof, wherein at least a portion of the second light-adjusting structures has a height greater than those of all the first light-adjusting structures. The optical film of the present invention will not suffer the damage caused on the microstructure layers while achieving a light-gathering effect and effectively reducing optical interference.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: November 12, 2013
    Assignee: Eternal Chemical Co., Ltd.
    Inventors: Ting-Yuang Wu, Hsung-Hsing Wang, Yi-Chia Wang
  • Patent number: 8545998
    Abstract: Embodiments of the current invention describe a method of plating platinum selectively on a copper film using a self-initiated electroless process. In particular, platinum films are plated onto very thin copper films having a thickness of less than 300 angstroms. The electroless plating solution and the resulting structure are also described. This process has applications in the semiconductor processing of logic devices, memory devices, and photovoltaic devices.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 1, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Bob Kong, Igor Ivanov, Zhi-Wen Sun, Jinhong Tong
  • Patent number: 8524382
    Abstract: Some aspects of the invention provide an oxide substrate having a flat surface at the atomic layer level, and suited to forming a thin film of a perovskite manganese oxide. One aspect of the invention provides a single-crystal oxide substrate 10 having a single-crystal supporting substrate 1 of (210)-oriented SrTiO3 and a single-crystal underlayer 2 of (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7, which is LSAT, formed on the (210) plane surface of the supporting substrate. In another aspect of the present invention, the LSAT underlayer 2A is formed in an amorphous state. Other aspects of the invention are also disclosed.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: September 3, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Yasushi Ogimoto
  • Patent number: 8512868
    Abstract: A hybrid silicon wafer which is a silicon wafer having a structure wherein the main plane orientation of polycrystalline silicon that is prepared by a unidirectional solidification/melting method is (311), and monocrystalline silicon is embedded in the polycrystalline silicon. The hybrid silicon wafer according to any one of claims 1 to 6, wherein the purity of the polycrystalline silicon portion excluding gas components is 6N or higher, the total amount of metal impurities is 1 wtppm or less, and, among the metal impurities, Cu, Fe, Ni, and Al are respectively 0.1 wtppm or less. Thus, a hybrid silicon wafer having the functions of both a polycrystalline silicon wafer and a monocrystalline silicon wafer is provided and the occurrence of polish bumps and macro-sized unevenness between the polycrystalline silicon and the monocrystalline silicon are prevented.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: August 20, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Ryo Suzuki, Hiroshi Takamura