Patents Examined by Junaiden Mirsalahuddin
  • Patent number: 9054200
    Abstract: Electric characteristics of a semiconductor device using an oxide semiconductor are improved. Further, a highly reliable semiconductor device in which a variation in electric characteristics with time or a variation in electric characteristics due to a gate BT stress test with light irradiation is small is manufactured. A transistor includes a gate electrode, an oxide semiconductor film overlapping with part of the gate electrode with a gate insulating film therebetween, and a pair of electrodes in contact with the oxide semiconductor film. The gate insulating film is an insulating film whose film density is higher than or equal to 2.26 g/cm3 and lower than or equal to 2.63 g/cm3 and whose spin density of a signal with a g value of 2.001 is 2×1015 spins/cm3 or less in electron spin resonance.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: June 9, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichi Okazaki, Toshiyuki Miyamoto, Masafumi Nomura, Takashi Hamochi
  • Patent number: 9048240
    Abstract: An electronic device includes an anisotropic conductive film as a connection material, the anisotropic conductive film being formed from an anisotropic conductive film-forming composition. The anisotropic conductive film-forming composition includes a polycyclic aromatic ring-containing epoxy resin, a fluorene epoxy resin, nano silica and conductive particles.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: June 2, 2015
    Assignee: CHEIL INDUSTRIES, INC.
    Inventors: Young Woo Park, Nam Ju Kim, Kyoung Soo Park, Joon Mo Seo, Kyung Il Sul, Dong Seon Uh, Arum Yu, Hyun Min Choi
  • Patent number: 9029235
    Abstract: A trench isolation metal-oxide-semiconductor (MOS) P-N junction diode device and a manufacturing method thereof are provided. The trench isolation MOS P-N junction diode device is a combination of an N-channel MOS structure and a lateral P-N junction diode, wherein a polysilicon-filled trench oxide layer is buried in the P-type structure to replace the majority of the P-type structure. As a consequence, the trench isolation MOS P-N junction diode device of the present invention has the benefits of the Schottky diode and the P-N junction diode. That is, the trench isolation MOS P-N junction diode device has rapid switching speed, low forward voltage drop, low reverse leakage current and short reverse recovery time.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: May 12, 2015
    Assignee: PFC Device Corp.
    Inventors: Mei-Ling Chen, Hung-Hsin Kuo, Kuo-Liang Chao
  • Patent number: 9029875
    Abstract: Disclosed are a light emitting device, a method for manufacturing the same, a light emitting device package, and a lighting system. The light emitting device includes a first conductive semiconductor layer, an active layer comprising a well layer and a barrier layer on the first conductive layer, and a second conductive semiconductor layer on the active layer. The well layer includes a first well layer closest to the first conductive semiconductor layer and having a first energy bandgap, a third well layer closest to the second conductive semiconductor layer and having a third energy bandgap, and a second well layer interposed between the first and third well layers and having a second energy bandgap. The third energy bandgap of the third well layer is greater than the second energy bandgap of the second well layer.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: May 12, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jong Ho Na, Se Hwan Sim, Chong Cook Kim, Jae In Yoon, Jong Pil Jeong, Jung Hyun Hwang, Dong Han Yoo
  • Patent number: 9006772
    Abstract: An organic light emitting diode (OLED) lighting apparatus includes a light emitting panel including an organic light emitting diode, a housing for housing the light emitting panel, a cover coupled to the housing and covering a front-side edge of the light emitting panel, a plurality of pins disposed between the housing and the light emitting panel and supporting an edge of the light emitting panel, and at least one contact bar disposed between the plurality of pins and a back-side edge of the light emitting panel.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 14, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jae-Goo Lee, Doo-Hwan Kim, Min-Woo Lee, Sung-Jin Choi, Young-Mo Koo
  • Patent number: 8987739
    Abstract: A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a gate, a channel layer, a gate insulation layer, a source, a drain and a silicon-aluminum-oxide layer. The gate is disposed on a substrate. The channel layer is disposed on the substrate. The channel layer overlaps the gate. The gate insulation layer is disposed between the gate and the channel layer. The source and the drain are disposed on two sides of the channel layer. The silicon-aluminum-oxide layer is disposed on the substrate and covers the source, the drain and the channel layer.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: March 24, 2015
    Assignee: Au Optronics Corporation
    Inventors: Chen-Yuan Tu, Yih-Chyun Kao, Shu-Feng Wu, Chun-Nan Lin
  • Patent number: 8987886
    Abstract: An electrical interconnect including a first circuitry layer with a first surface and a second surface. At least a first dielectric layer is printed on the first surface of the first circuitry layer to include a plurality of first recesses. A conductive material is deposited in a plurality of the first recesses to form a plurality of first conductive pillars electrically coupled to, and extending generally perpendicular to, the first circuitry layer. At least a second dielectric layer is printed on the first dielectric layer to include a plurality of second recesses generally aligned with a plurality of the first conductive pillars. A conductive material is deposited in a plurality of the second recesses to form a plurality of second conductive pillars electrically coupled to, and extending parallel the first conductive pillars.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: March 24, 2015
    Assignee: HSIO Technologies, LLC
    Inventor: James Rathburn
  • Patent number: 8975660
    Abstract: An organic light emitting diode (OLED) display includes: a substrate; an organic light emitting diode formed on the substrate; a first inorganic layer formed on the substrate and covering the organic light emitting diode; an intermediate layer formed on the first inorganic layer and covering an area relatively smaller than the first inorganic layer; and a second inorganic layer formed on the first inorganic layer and the intermediate layer, and contacting the first inorganic layer at an edge thereof while covering a relatively larger area than the intermediate layer. A third inorganic layer may be formed on the second inorganic layer so as to contact the second inorganic layer at an edge thereof. At least one of the first, second and third inorganic layers is formed by an atomic layer deposition (ALD) method.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: March 10, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jin-Kwang Kim, Sang-Joon Seo, Seung-Hun Kim
  • Patent number: 8970050
    Abstract: A semiconductor memory device includes a first chip and a second chip connected to the first chip physically and electrically, wherein the first chip and the second chip are coupled by through silicon vias (TSVs) formed in a first region, and the first chip and the second chip are coupled by alignment keys formed in second regions.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: March 3, 2015
    Assignee: SK hynix Inc.
    Inventor: Chang Hyun Lee
  • Patent number: 8963320
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a thermal attach cluster includes: forming a heat collector having a heat dissipation surface, forming a cluster bridge, having a thermal surface, connected to the heat collector, forming a cluster pad, having an attachment surface, connected to the end of the cluster bridge opposite the heat collector; connecting an integrated circuit to the thermal attach cluster; and forming an encapsulation over the thermal attach cluster with the heat dissipation surface, the thermal surface, and the attachment surface exposed from and coplanar with the encapsulation.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: February 24, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua, Wei Chun Ang
  • Patent number: 8963253
    Abstract: A bi-directional electrostatic discharge (ESD) protection device may include a substrate, an N+ doped buried layer, an N-type well region and two P-type well regions. The N+ doped buried layer may be disposed proximate to the substrate. The N-type well region may encompass the two P-type well regions such that a portion of the N-type well region is interposed between the two P-type well regions. The P-type well regions may be disposed proximate to the N+ doped buried layer and comprise one or more N+ doped plates, one or more P+ doped plates, one or more field oxide (FOX) portions, and one or more field plates. A multi-emitter structure is also provided.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: February 24, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsin-Liang Chen, Shuo-Lun Tu
  • Patent number: 8946666
    Abstract: A phase change material comprises GexSbyTez, wherein a Ge atomic concentration x is within a range from 30% to 65%, a Sb atomic concentration y is within a range from 13% to 27% and a Te atomic concentration z is within a range from 20% to 45%. A Ge-rich family of such materials is also described. A memory device, suitable for integrated circuits, comprising such materials is described.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: February 3, 2015
    Assignees: Macronix International Co., Ltd., International Business Machines Corporation
    Inventors: Huai-Yu Cheng, Hsiang-Lan Lung, Simone Raoux, Yen-Hao Shih, Matthew J. Breitwisch
  • Patent number: 8941112
    Abstract: A semiconductor device in which fluctuation in electric characteristics due to miniaturization is less likely to be caused is provided. The semiconductor device includes an oxide semiconductor film including a first region, a pair of second regions in contact with side surfaces of the first region, and a pair of third regions in contact with side surfaces of the pair of second regions; a gate insulating film provided over the oxide semiconductor film; and a first electrode that is over the gate insulating film and overlaps with the first region. The first region is a CAAC oxide semiconductor region. The pair of second regions and the pair of third regions are each an amorphous oxide semiconductor region containing a dopant. The dopant concentration of the pair of third regions is higher than the dopant concentration of the pair of second regions.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: January 27, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8941188
    Abstract: A semiconductor arrangement includes a semiconductor body and a power transistor arranged in a first device region of the semiconductor body. The power transistor includes at least one source region, a drain region, and at least one body region, at least one drift region of a first doping type and at least one compensation region of a second doping complementary to the first doping type, and a gate electrode arranged adjacent to the at least one body region and dielectrically insulated from the body region by a gate dielectric. The semiconductor arrangement also includes a further semiconductor device arranged in a second device region of the semiconductor body. The second device region includes a well-like structure of the second doping type surrounding a first semiconductor region of the first doping type. The further semiconductor device includes device regions arranged in the first semiconductor region.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: January 27, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Franz Hirler, Peter Irsigler
  • Patent number: 8937394
    Abstract: An embodiment of the invention provides a compound barrier layer, including: a first barrier layer disposed on a substrate; and a second barrier layer disposed on the first barrier layer, wherein the first barrier layer and second barrier layer both include a plurality of alternately arranged inorganic material regions and organo-silicon material regions and the inorganic material regions and the organo-silicon material regions of the first barrier layer and second barrier layer are alternatively stacked vertically.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: January 20, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Ting Chen, Li-Wen Lai, Kun-Wei Lin, Teng-Yen Wang
  • Patent number: 8933468
    Abstract: A first product may be provided that comprises a substrate having a first surface, a first side, and a first edge where the first surface meets the first side; and a device disposed over the substrate, the device having a second side, where at least a first portion of the second side is disposed within 3 mm from the first edge of the substrate. The first product may further comprise a first barrier film that covers at least a portion of the first edge of the substrate, at least a portion of the first side of the substrate, and at least the first portion of the second side of the device.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: January 13, 2015
    Assignees: Princeton University Office of Technology and Trademark Licensing, Universal Display Corporation
    Inventors: Prashant Mandlik, Ruiqing Ma, Jeff Silvernail, Julia J. Brown, Lin Han, Sigurd Wagner, Luke Walski
  • Patent number: 8927998
    Abstract: An array substrate for a liquid crystal display (LCD) and manufacturing method thereof are provided. The array substrate for a liquid crystal display (LCD) includes: a substrate, including: a gate electrode, a pixel electrode, and a common electrode, a gate pad formed on the substrate, and connected to the gate electrode, a gate insulating layer formed on the gate pad, a first protective layer formed on the gate insulating layer, a second protective layer formed on the first protective layer, a first metal layer formed on the second protective layer, and connected to the gate pad through a first contact hole which exposes the gate pad, a third protective layer formed on the first metal layer and the second protective layer, and a second metal layer formed on the third protective layer, and connected to the first metal layer through a second contact hole which exposes the first metal layer.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: January 6, 2015
    Assignee: LG Display Co., Ltd.
    Inventors: YoonHwan Woo, SunJung Lee
  • Patent number: 8921857
    Abstract: A semiconductor device comprising a circuit including a plurality of thin film transistors and at least one diode (D2a), wherein: the plurality of thin film transistors have the same conductivity type; when the conductivity type of the plurality of thin film transistors is an N type, a cathode-side electrode of the diode (D2a) is connected to a line (550) connected to a gate of a selected one of the plurality of thin film transistors; when the conductivity type of the plurality of thin film transistors, an anode-side electrode of the diode is connected to a line (550) connected to a gate of a selected one of the plurality of thin film transistors; and another diode arranged so that a current flow direction thereof is opposite to that of the diode (D2a) is not formed on the line (550). Thus, it is possible to suppress damage to a thin film transistor due to ESD while suppressing the increase in circuit scale from conventional techniques.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: December 30, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hiroyuki Moriwaki
  • Patent number: 8916884
    Abstract: Disclosed is a light-emitting device comprising: a light-emitting stack with a length and a width comprising: a first conductivity type semiconductor layer; an active layer on the first conductivity type semiconductor layer; and a second conductivity type semiconductor layer on the active layer; a conductive layer with a width greater than the width of the first conductivity type semiconductor layer and under the first conductivity type semiconductor layer, the conductive layer comprising a first overlapping portion which overlaps the first conductivity type semiconductor layer and a first extending portion which does not overlap the first conductivity type semiconductor layer; a transparent conductive layer with a width greater than the width of the second conductivity type semiconductor layer over the second conductivity type semiconductor layer, the transparent conductive layer comprising a second overlapping portion which overlaps the second conductivity type semiconductor layer and a second extending por
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: December 23, 2014
    Assignee: Epistar Corporation
    Inventors: Shih-I Chen, Wei-Yu Chen, Yi-Ming Chen, Ching-Pei Lin, Tsung-Xian Lee
  • Patent number: 8912610
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate; and a gate stack disposed on the semiconductor substrate. The gate stack includes a high k dielectric material layer, a capping layer disposed on the high k dielectric material layer, and a metal layer disposed on the capping layer. The capping layer and the high k dielectric material layer have a footing structure.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: December 16, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jr Jung Lin, Yun-Ju Sun, Shih-Hsun Chang, Chia-Jen Chen, Tomonari Yamamoto, Chih-Wei Kuo, Meng-Yi Sun, Kuo-Chiang Ting