Patents Examined by Junghwa Im
  • Patent number: 7138326
    Abstract: A shadow mask for depositing solder bumps includes additional dummy holes located adjacent holes corresponding to most of the perimeter chips of the wafer. The additional dummy provide more uniform plasma etching of contacts of the wafer, improve etching of contacts of perimeter chips, and lower contact resistance of contacts of perimeter chips. The extra holes also provide solder bumps outside the perimeter chips that can be used to support a second shadow mask for deposition of an additional material, such as tin, on the reflowed solder bumps for mounting the chips on a plastic substrate at low temperature. An improved mask to wafer alignment aid is formed from standard solder bumps. The improved alignment aid avoids damage to test probes and provides improved course alignment.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: November 21, 2006
    Assignee: International Business Machines Corp.
    Inventors: Harry D. Cox, David P. Daniel, Leonard J. Gardecki, Albert J. Gregoritsch, III, Ruth A. Machell Julianelle, Charles H. Keeler, Doris P. Pulaski, Mary A. Schaffer, David L. Smith, David J. Specht, Adolf E. Wirsing
  • Patent number: 7132748
    Abstract: A semiconductor apparatus is provided in which input/output of an electric signal having a particularly high frequency is less disturbed by parasitic capacitance generated in a wiring in the semiconductor apparatus. A first through-hole wiring penetrating a first dielectric board, a second through-hole wiring penetrating a second dielectric board, and an internal wiring inserted between the first dielectric board and the second dielectric board are provided. The first through-hole wiring and the second through-hole wiring are arranged on the internal wiring while being away from each other.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: November 7, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Tomoji Hamada
  • Patent number: 7132743
    Abstract: This invention relates to the manufacture of a substrate, such as a package substrate or an interposer substrate, of an integrated circuit package. A base structure is formed from a green material having a plurality of via openings therein. The green material is then sintered so that the green material becomes a sintered ceramic material and the base structure becomes a sintered ceramic base structure having the via openings. A conductive via is formed in each via opening of the sintered ceramic base structure. A capacitor structure is formed on the sintered ceramic base structure. The power and ground planes of the capacitor structure are connected to the vias. As such, a capacitor structure can be formed and connected to the vias without the need to drill vias openings in brittle substrates such as silicon substrates.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: November 7, 2006
    Assignee: Intel Corporation
    Inventor: Cengiz A. Palanduz
  • Patent number: 7132755
    Abstract: An adhesive film for manufacturing a semiconductor device comprising a thermosetting adhesive layer and a heat-resistant backing layer, wherein the adhesive film is applied to a method for manufacturing a semiconductor device, comprising the steps of (a) embedding at least a part of a conductor in the adhesive film to form a conductor adhered thereto; (b) mounting a semiconductor chip on the conductor; (c) connecting the semiconductor chip to the conductor; (d) encapsulating the semiconductor chip with an encapsulation resin; and (e) removing the adhesive film therefrom. The adhesive film can be suitably used for manufacturing a semiconductor device having a so-called standoff wherein a part of a conductor is projecting from an encapsulation resin.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: November 7, 2006
    Assignee: Nitto Denko Corporation
    Inventors: Kazuhito Hosokawa, Takuji Okeyui, Kazuhiro Ikemura, Keisuke Yoshikawa
  • Patent number: 7125744
    Abstract: In the high-frequency module of the present invention, an insulating resin is formed so as to seal a high-frequency semiconductor element mounted on a surface of a substrate and further to seal electronic components. Furthermore, a metal thin film is formed on the surface of the insulating resin. This metal thin film provides an electromagnetic wave shielding effect.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: October 24, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideki Takehara, Noriyuki Yoshikawa, Kunihiko Kanazawa
  • Patent number: 7119372
    Abstract: A flip chip light emitting diode die (10, 10?, 10?) includes a light-transmissive substrate (12, 12?, 12?) and semiconductor layers (14, 14?, 14?) that are selectively patterned to define a device mesa (30, 30?, 30?). A reflective electrode (34, 34?, 34?) is disposed on the device mesa (30, 30?, 30?). The reflective electrode (34, 34?, 34?) includes a light-transmissive insulating grid (42, 42?, 60, 80) disposed over the device mesa (30, 30?, 30?), an ohmic material (44, 44?, 44?, 62) disposed at openings of the insulating grid (42, 42?, 60, 80) and making ohmic contact with the device mesa (30, 30?, 30?), and an electrically conductive reflective film (46, 46?, 46?) disposed over the insulating grid (42, 42?, 60, 80) and the ohmic material (44, 44?, 44?, 62). The electrically conductive reflective film (46, 46?, 46?) electrically communicates with the ohmic material (44, 44?, 44?, 62).
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: October 10, 2006
    Assignee: GELcore, LLC
    Inventors: Edward B. Stokes, Mark P. D'Evelyn, Stanton E. Weaver, Peter M. Sandvik, Abasifreke U. Ebong, Xian-an Cao, Steven F. LeBoeuf, Nikhil R. Taskar
  • Patent number: 7115997
    Abstract: An integrated circuit (IC) chip, semiconductor wafer with IC chips in a number of die locations and a method of making the IC chips on the wafer. The IC chips have plated chip interconnect pads. Each plated pad includes a noble metal plated layer electroplated to a platable metal layer. The platable metal layer may be copper and the noble metal plated layer may be of gold, platinum, palladium, rhodium, ruthenium, osmium, iridium or indium.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: October 3, 2006
    Assignee: International Business Machines Corporation
    Inventors: Chandrasekhar Narayan, Kevin Shawn Petrarca
  • Patent number: 7109531
    Abstract: A high frequency switch, has a transmitting terminal, a receiving terminal, an antenna terminal, a first diode having an anode electrically connected to the transmitting terminal and a cathode electrically connected to the antenna terminal, a second diode having an anode connected through a transmission line of ΒΌ wavelength to the antenna terminal which is electrically connected to the receiving terminal, and having the side of a cathode grounded, and a control terminal provided to a node between the transmitting terminal and the first anode. The first and second diodes have a tradeoff relationship between ON resistance thereof and capacitance between the anode and the cathode, and the ON resistance of the first diode is lower than the ON resistance of the second diode, and the capacitance of the second diode in the OFF state is smaller than the capacitance of the first diode in the OFF state.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: September 19, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shoichi Kitazawa, Masaharu Tanaka, Toshio Ishizaki, Toru Yamada
  • Patent number: 7105917
    Abstract: A semiconductor device and a fabrication method thereof are provided. The semiconductor device has a probing pad formed on a chip. The probing pad is connected to an output pad and an internal circuit though a fuse. After an electrical testing of the chip by the probing pad, the fuse is cut by a laser beam. Therefore, the probing pad is disconnected from the output pad and the internal circuit. The output pad is connected to an output lead of a package, which is encapsulating the chip. According to the device and the fabrication methods thereof, performance of the device can be enhanced by a low parasitic capacitance and a low parasitic resistance.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: September 12, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kang-Sik Cho, Chul-Sung Park, Gyu-Chul Kim
  • Patent number: 7102209
    Abstract: A lead-frame based substrate panel for use in semiconductor packaging is described. The substrate panel includes a lead-frame panel having at least one array of device areas. Each device area has a plurality of contacts. The lead-frame panel is filled with a dielectric material to form a relatively rigid substrate panel that can be used for packaging integrated circuits. The top surface of the dielectric material is typically substantially coplanar with the top surface of the lead-frame panel, and the bottom surface of the dielectric material is typically substantially coplanar with the bottom surface of the lead-frame panel.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: September 5, 2006
    Assignee: National Semiconductor Corporation
    Inventors: Jaime Bayan, Ashok S. Prabhu, Fred Drummond
  • Patent number: 7102230
    Abstract: A circuit carrier adapted for a pin grid array (PGA) package is disclosed. The circuit carrier comprises a substrate, at least one pin pad, at least one solder mask layer, at least one solder layer, at least one pin and a fixing layer. The pin pad is disposed over the surface of the substrate. The solder mask layer is disposed over the surface of the substrate, and exposing at least a portion of the pin pad. The solder layer is disposed over the pin pad. One end of the pin connects to the pin pad through the solder layer. The fixing layer is disposed over the solder mask layer, and covering the solder layer and a portion of a side surface of the pin. When the solder layer melts due to a high process temperature, the fixing layer helps to fix the pin to the pin pad.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: September 5, 2006
    Assignee: VIA Technologies, Inc.
    Inventor: Chih-An Yang
  • Patent number: 7098512
    Abstract: Layout patterns for the deep well region to facilitate routing the body-bias voltage in a semiconductor device are provided and described. The layout patterns include a diagonal sub-surface mesh structure, an axial sub-surface mesh structure, a diagonal sub-surface strip structure, and an axial sub-surface strip structure. A particular layout pattern is selected for an area of the semiconductor device according to several factors.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: August 29, 2006
    Assignee: Transmeta Corporation
    Inventors: Mike Pelham, James B. Burr
  • Patent number: 7098113
    Abstract: A power lateral PNP device is disclosed which includes an epitaxial layer; a first and second collector region embedded in the epitaxial layer; an emitter region between the first and second collector regions. Therefore slots are placed in each of the regions. Accordingly, in a first approach the standard process flow will be followed until reaching the point where contact openings and metal are to be processed. In this approach slots are etched that are preferably 5 to 6 um deep and 5 to 6 um wide. These slots are then oxidized and will be subsequently metalized. When used for making metal contacts to the buried layer or for ground the oxide is removed from the bottom of the slots by an anisotropic etch. Subsequently when these slots receive metal they will provide contacts to the buried layer where this is desired and to the substrate when a ground is desired. In a second approach the above-identified process is completed up through the slot process without processing the lateral PNPs.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: August 29, 2006
    Assignee: Micrel, Inc.
    Inventors: John Durbin Husher, Ronald L. Schlupp
  • Patent number: 7091582
    Abstract: A semiconductor device package comprises a perimeter wall snap fitted to a base having a semiconductor die mounted on the base. A lead is mounted on the opposite side of the die, and the die and a portion of the lead are protected by an encapsulant disposed within the perimeter wall.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: August 15, 2006
    Inventors: Mario Merlin, Sebastiano Ferrero
  • Patent number: 7081661
    Abstract: In the high-frequency module of the present invention, an insulating resin is formed so as to seal a high-frequency semiconductor element mounted on a surface of a substrate and further to seal electronic components. Furthermore, a metal thin film is formed on the surface of the insulating resin. This metal thin film provides an electromagnetic wave shielding effect.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: July 25, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hideki Takehara, Noriyuki Yoshikawa, Kunihiko Kanazawa
  • Patent number: 7078820
    Abstract: A process of production of a semiconductor apparatus which can suppress a rise in the electrical resistance and a decline in the joint strength at the bump connection interfaces and improve the connection reliability when using the method of reinforcing the bases of the bumps by a resin film. Bumps are formed on a semiconductor wafer formed with a pattern circuit of a semiconductor chip so as to connect to the circuit pattern, a resin film is formed on the bump forming surface of the semiconductor wafer to a thickness giving a surface lower than the height of the bumps while sealing the spaces between the bumps, plasma cleaning etc., is used to remove the sealing resin components deposited on the surface portions of the bumps or natural oxides or other insulating impurities to clean and activate the surfaces of the bumps, and the chip is mounted on a mounting board.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: July 18, 2006
    Assignee: Sony Corporation
    Inventor: Toshiharu Yanagida
  • Patent number: 7064399
    Abstract: The present invention is a method for forming super steep doping profiles in MOS transistor structures. The method comprises forming a carbon containing layer (110) beneath the gate dielectric (50) and source and drain regions (80) of a MOS transistor. The carbon containing layer (110) will prevent the diffusion of dopants into the region (40) directly beneath the gate dielectric layer (50).
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: June 20, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Angelo Pinto, Scott Balster, Alfred Haeusler, Gregory E. Howard
  • Patent number: 7061084
    Abstract: A lead-bond type chip package includes a multilayer substrate for supporting and electrical interconnecting a semiconductor chip. The multilayer substrate has a slot defined therein. The multilayer substrate comprises an interlayer circuit board having prepregs disposed thereon, a plurality of leads on the prepreg on the upper surface of the interlayer circuit board, and a plurality of solder pads for making external electrical connection on the prepreg on the lower surface of the interlayer circuit board. The leads of the multilayer substrate are bonded to corresponding bonding pads formed on the semiconductor chip. A package body is formed on the multilayer substrate around the semiconductor chip and in the slot of the multilayer substrate. The multilayer substrate is capable of providing a power or ground plane formed therein for enhancing the electrical performance of the package, and providing a high wiring density for packaging a chip with high I/O connections.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: June 13, 2006
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Kun-Ching Chen, Yung I Yeh
  • Patent number: 7057242
    Abstract: An integrated circuit transistor includes an active region in a substrate, elongated along a first direction. A gate pattern is disposed on the substrate and crosses the active region along a second direction transverse to the first direction. The gate pattern includes an access gate portion disposed on the active region and narrowed at a central portion thereof. The gate pattern may further include a pass gate portion adjoining the access gate portion at the point beyond the edge of the active region, the pass gate portion having a lesser extent along the first direction than the access gate portion.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: June 6, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-young Kim, Hyoung-sub Kim
  • Patent number: 7053495
    Abstract: A semiconductor integrated circuit device includes: Si substrate; multilevel interconnect layer formed on the Si substrate; and dielectric layer formed on the multilevel interconnect layer. External-component-connecting wire, ordinary wire, fuse wire, stepper alignment mark, and target mark are formed out of an identical copper film in the uppermost metal layer. External-component-connecting pad electrode, testing-processing alignment mark, and stepper alignment mark are formed out of an identical aluminum alloy film on the dielectric film. In laser-machining the fuse wire, alignment using the target mark formed in the metal layer including the fuse wire reduces alignment errors caused from the machining.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: May 30, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Katsuhiko Tsuura