Patents Examined by Kennedy Schaetzle
  • Patent number: 10493282
    Abstract: Therapy systems for treating a patient are disclosed. Representative therapy systems include an implantable pulse generator, a signal delivery device electrically coupled to the pulse generator, and a remote control in electrical communication with the implantable pulse generator. The pulse generator can have a computer-readable medium containing instructions for performing a process that comprises collecting the patient status and stimulation parameter; analyzing the collected patient status and stimulation parameter; and establishing a preference baseline containing a preferred stimulation parameter corresponding to a particular patient status.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: December 3, 2019
    Assignee: Nevro Corp.
    Inventors: Anthony V. Caparso, Jon Parker, Andre B. Walker, Yougandh Chitre
  • Patent number: 10478131
    Abstract: A method for monitoring a health characteristic of a user based on one or more biological measurements may include selecting a context from a plurality of contexts, each context corresponding to a baseline health value, and each context being defined by a plurality of recorded events each comprising one or more of repeated biological states, repeated user activity, or space-time coordinates of the user, and then monitoring the health characteristic of the user based on one or more bio-sensing measurements in comparison to the baseline health value corresponding to the selected context.
    Type: Grant
    Filed: June 15, 2016
    Date of Patent: November 19, 2019
    Assignee: Samsung Electronics Company, Ltd.
    Inventors: Jawahar Jain, James Young, Cody Wortham, Sajid Sadi, Pranav Mistry
  • Patent number: 10471250
    Abstract: Implantable devices and systems include one or more leads adapted to be emplaced in the internal thoracic vein (ITV) of a patient. The lead may include features to adapt the lead for such placement. An associated device for use with the lead may include operational circuitry adapted for use with a lead having an electrode for sensing and/or therapy purposes coupled thereto. Methods for implantation and use of such devices and systems are disclosed as well.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: November 12, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventor: G. Shantanu Reddy
  • Patent number: 10463862
    Abstract: A passive implantable relay module includes a first coupler arm configured to wirelessly receive electromagnetic energy radiated through electric radiative coupling from a transmitting antenna located outside a subject's body; a second coupler arm; and a connector portion comprising a first metal core and a first dielectric coating surrounding the first metal core, the connector portion configured to connect the first coupler arm to the second coupler arm such that when the passive implantable relay module is implanted inside the subject's body and the transmitting antenna initiates wireless energy transfer to the first coupler arm via non-inductive coupling, electromagnetic waves carrying the electromagnetic energy received at the first coupler arm propagate along the first metal core to arrive at the second coupler arm, where the electromagnetic energy arriving is wirelessly transferred, again via non-inductive coupling, to a receiving antenna on a passive wireless neural stimulator device.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: November 5, 2019
    Assignee: Stimwave Technologies Incorporated
    Inventors: Richard LeBaron, Laura Tyler Perryman
  • Patent number: 10463305
    Abstract: Methods, systems and devices for providing cardiac resynchronization therapy (CRT) to a patient using a leadless cardiac pacemaker (LCP) and an extracardiac device (ED). The system is configured to identify atrial events to use as timing markers for the LCP to deliver CRT, and further to determine whether the timing markers are incorrectly sensed and to make adjustment or call for re-initialization as needed.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: November 5, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Qi An, Pramodsingh Hirasingh Thakur, Stephen J. Hahn, Yinghong Yu, Krzysztof Z. Siejko, Viktoria A. Averina, Brendan Early Koop, Keith R. Maile, Bin Mi
  • Patent number: 10456056
    Abstract: Cardiac catheterization is carried out by clothing a subject in a torso vest having a plurality of sensing electrodes, magnetic location sensors, active current location sensors and patches for establishing galvanic contact with the skin. A multi-electrode probe is inserted into a cardiac chamber such that a plurality of intracardiac electrodes are disposed at respective locations in the heart. Respective locations are determined using the active current location sensors, Electrical calibration signals are emitted from the intracardiac electrodes, and received in the sensing electrodes of the torso vest. Relationships between the emitted calibration signals and the received calibration signals in the intracardiac electrodes are established to map a correspondence between the received calibration signals and the respective locations.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: October 29, 2019
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Assaf Govari, Andres Claudio Altmann
  • Patent number: 10456579
    Abstract: An electrotherapeutic system for treating a visual disease is disclosed. The system includes a signal generator configured to generate a treatment waveform comprising a series of current pulses. Preferably, the current pulses have a peak current amplitude of 200 microamps or less. The system also includes a headset applicator comprising a headband and a headset. The headset has a magnetic slot configured to be mounted to a magnetic mount of the headband. The headset includes left and right eyecup electrodes each of which has a contact surface that is positioned for contact with a skin surface within left and right eye regions, respectively. Preferably, the contact surface of each of the left and right eyecup electrodes comprises an upper contact pad and a lower contact pad that have a total area in the range of about 1.10 cm2 to about 1.80 cm2. The headset is connectable to the signal generator and configured to deliver the treatment waveform to one or both of the left and right electrodes.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: October 29, 2019
    Assignee: Nova Oculus Canada Manufacturing ULC
    Inventor: Alfonso Salazar
  • Patent number: 10448859
    Abstract: The present disclosure provides a mounting assembly for attaching medical equipment to a patient table. In one particular embodiment, the present disclosure provides a mounting assembly for attaching a magnetic field generator to a patient table. The mounting assembly allows for the secure attachment of the magnetic field generator to the patient table while also allowing for easy adjustment of the positioning and location of the magnetic field generator, even after the patient is on the table. In many embodiments the mounting assembly is comprised of a mounting apparatus that attaches directly to the patient table and first and second side rails that attach to the magnetic field generator and are configured to slidably attach to the mounting apparatus. In some embodiments, the mounting apparatus and side rails are constructed of a material that provides little or no interference with the magnetic field generator.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: October 22, 2019
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Peter Wehner, Lawrence Swanson, Adam Fischbach
  • Patent number: 10441795
    Abstract: Systems and methods for providing CRT therapy to a patient with an implanted multi-site pacing medical device. In one example, an intrinsic electrical delay associated with each of two or more left ventricle electrodes may be determined. The intrinsic electrical delay associated with each of the two or more left ventricle electrodes may be compared to an electrical delay threshold. If the electrical delay associated with one or fewer left ventricle electrodes is greater than the electrical delay threshold, a single left ventricle electrode may be selected for use during subsequent CRT therapy. If the electrical delay associated with more than one left ventricle electrode is greater than the electrical delay threshold, two or more of the left ventricle electrodes may be selected for use during subsequent CRT therapy.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: October 15, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, Keith L. Herrmann, Holly E. Rockweiler, Sunipa Saha, Benjamin J Nyquist
  • Patent number: 10441785
    Abstract: Systems and methods for the treatment of bladder conditions using direct electrical pacing are provided. The systems and methods generally apply high-frequency pacing stimuli directly to the bladder wall, from one or more of the inner and outer bladder surfaces.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: October 15, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Timothy Harrah, Ding He, Sandra Nagale, Bryan Clark
  • Patent number: 10434317
    Abstract: Systems, devices, and methods for pacing a heart of a patient are disclosed. An illustrative method may include determining a motion level of the patient using a motion sensor of an implantable medical device secured relative to a patient's heart, and setting a pacing rate based at least in part on the patient's motion level. The patient's motion level may be determined by, for example, comparing the motion level sensed by the motion sensor during a current heart beat to a motion level associated with one or more previous heart beats. Noise may occur in the motion level measurements during those heart beats that transition between an intrinsically initiated heart beat and pace initiated heart beat. Various techniques may be applied to the motion level measurements to help reduce the effect of such noise.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 8, 2019
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Paul Huelskamp, Michael J. Kane, Lance Eric Juffer
  • Patent number: 10426878
    Abstract: A blood pump system for persistently increasing the overall diameter and lumen diameter of peripheral veins and arteries by persistently increasing the speed of blood and the wall shear stress in a peripheral vein or artery for a period of time sufficient to result in a persistent increase in the overall diameter and lumen diameter of the vessel is provided. The blood pump system includes a blood pump, blood conduit(s), a control system with optional sensors, and a power source. The pump system is configured to connect to the vascular system in a patient and pump blood at a desired rate and pulsatility. The pumping of blood is monitored and adjusted, as necessary, to maintain the desired elevated blood speed, wall shear stress, and desired pulsatility in the target vessel to optimize the rate and extent of persistent increase in the overall diameter and lumen diameter of the target vessel.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: October 1, 2019
    Assignee: Flow Forward Medical, Inc.
    Inventor: F. Nicholas Franano
  • Patent number: 10410047
    Abstract: The present invention is a method of processing a video image in an electronic video processor including the steps of receiving an input image having an input field of view, generating a processed image from the input image, and having an output field of view smaller than the input field of view, searching for a predetermined pattern within the input image, providing an indication when the predetermined pattern is found in the input image, and zooming the processed image to the input field of view and highlighting the predetermined pattern in the processed image in response to the indication.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: September 10, 2019
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Greenberg, Avraham Caspi, Francesco Merlini, Arup Roy
  • Patent number: 10398331
    Abstract: Cardiac activity (e.g., a cardiac electrogram) is analyzed for local abnormal ventricular activity (LAVA), such as by using a LAVA detection and analysis module incorporated into an electroanatomical mapping system. The module transforms the electrogram signal into the wavelet domain to compute as scalogram; computes a one-dimensional LAVA function of the scalogram; detects one or more peaks in the LAVA function; and computes a peak-to-peak amplitude of the electrogram signal. If the peak-to-peak amplitude does not exceed a preset amplitude threshold, then the module can compute one or more of a LAVA lateness parameter for the electrogram signal using one of the one or more peaks detected in the LAVA function and a LAVA probability parameter for the electrogram signal.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 3, 2019
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Jatin Surendra Relan, Pierre Jais
  • Patent number: 10391313
    Abstract: Methods, devices and systems for developing new therapy options for patient suffering from neurological disorders. An example may include the use of a therapy patterning system that allows significant freedom to program therapy patterns using arbitrary shapes and functions. For such patterning to be implemented, a physician may identify a condition needing new and/or alternative therapy options, link the identified condition one or more therapy parameters, program, test and assess the therapy. The process may include multiple iterations to address an initial condition and then to mitigate side effects of the initial therapy. Some embodiments comprises devices configured to deliver combinations of therapy patterns to accomplish at least first and second therapeutic purposes.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: August 27, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael A. Moffitt, G. Karl Steinke, Sridhar Kothandaraman, Bradley Lawrence Hershey, Changfang Zhu, Jordi Parramon, Goran N. Marnfeldt, John Rivera, Stephen Carcieri
  • Patent number: 10384064
    Abstract: Sensory information can be delivered to a subject mammal, for example, for restoring a sense of cutaneous touch and limb motion to the subject mammal. A biomimetic electrical signal is generated based on (a) a stimulation reference signal applied to a somatosensory region of a nervous system of a reference mammal, (b) a stimulated-response signal acquired from a sensory cortex of the reference mammal in response to application of the stimulation reference signal to the thalamic nucleus, and (c) a natural-response signal acquired from the sensory cortex in response to peripheral touch stimuli and/or peripheral nerve stimulation of the reference mammal. The biomimetic electrical signal is applied to a somatosensory region of a nervous system of the subject mammal to induce an activation response, in a sensory cortex of the subject mammal.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: August 20, 2019
    Assignee: The Research Foundation for the State University of New York
    Inventors: John S. Choi, Joseph T. Francis
  • Patent number: 10384058
    Abstract: An apparatus for securing a sensor at the heart is formed based on a modified, branched, pacemaker lead to provide a heart anchor lead where two anchors are coupled to a single main lead rather than there being just a single anchor. Thus, the proposed heart anchor lead comprises a single main lead, a sensor included within the main lead, in which the sensor has a distal end and a proximal end, a first anchor coupled to the distal end of the sensor and extending outward from the distal end of the sensor, and a second anchor coupled to the proximal end of the sensor and extending outward from the proximal end of the sensor in a direction that forms an angle with the first anchor. The heart anchor lead can optionally also have a pacemaking function.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: August 20, 2019
    Assignee: Cardiaccs AS
    Inventors: Erik Fosse, Jonas Tyssø
  • Patent number: 10383534
    Abstract: A method, including receiving a bipolar signal from a pair of electrodes in proximity to a myocardium of a human subject and receiving a unipolar signal from a selected one of the pair of electrodes. The method further includes computing a local unipolar minimum derivative of the unipolar signal, and a time of occurrence of the unipolar minimum derivative. The method also includes computing a bipolar derivative of the bipolar signal, evaluating a ratio of the bipolar derivative to the local unipolar minimum derivative, and when the ratio is greater than a preset threshold ratio value, identifying the time of occurrence as a time of activation of the myocardium.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: August 20, 2019
    Assignee: Biosense Webster (Israel) Ltd.
    Inventors: Lior Botzer, Meir Bar-Tal, Elad Nakar
  • Patent number: 10384051
    Abstract: The present application relates to a device for the electroporation of bacterial cells in or on a surface of the Stratum corneum layer of a person's skin. It comprises electrodes positionable in the vicinity of said surface; a generator to supply a voltage to the electrodes to generate an electrical field having a strength in the order of 25 to 35 KV/cm at said surface of the Stratum corneum layer to inactivate bacterial cells in or on said surface. The electrodes are configured so that the strength of the electrical field reduces as a function of the depth of penetration into the skin from 25 to 35 KV/cm at said surface to 3 KV/cm or less at a depth of penetration that does not exceed 15 microns.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: August 20, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Eduard Gerard Marie Pelssers, Mark Thomas Johnson, Johannes Hendrikus Maria Spruit, David Halter, Roland Cornelis Martinus Vulders, Robby Petrus Cornelis Van Dreumel, Marco Baragona
  • Patent number: 10376221
    Abstract: Cardiac electrograms are recorded in a plurality of channels. Beats are classified automatically into respective classifications according to a resemblance of the morphologic characteristics of the beats to members of a set of templates. Respective electroanatomic maps of the heart are generated from the classified beats.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: August 13, 2019
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD.
    Inventors: Ofra Iyun, Noga Salomon, Galia Givaty, Eliran Guzi, Vladimir Rubinstein, Meir Bar-Tal, Morris Ziv-Ari