Patents Examined by Kiet T. Nguyen
  • Patent number: 11469091
    Abstract: A mass spectrometry apparatus includes an ion detector and a control circuit coupled to the ion detector. The ion detector includes a pulse counting stage and an analog stage configured to generate a pulse counting signal and an analog signal, respectively, responsive to incident ions. The a control circuit is configured to output the pulse counting signal in a pulse counting output mode and to output the analog signal in an analog output mode. The control circuit is configured to switch from the pulse counting output mode to the analog output mode responsive to the pulse counting signal exceeding a first threshold within a range of about 10 million counts per second to about 200 million counts per second. Related devices and operating methods are also discussed.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: October 11, 2022
    Assignee: PerkinElmer Health Sciences Canada, Inc.
    Inventors: William Fisher, Bohdan Atamanchuk, Hamid R. Badiei
  • Patent number: 11458513
    Abstract: To provide a charged particle beam apparatus. The charged particle beam apparatus includes: a stage on which a sample is placed; a cleaner configured to remove a contaminant on the sample; and a stage control unit configured to adjust a relative positional relationship between the cleaner and the sample by moving the stage during use of the cleaner.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: October 4, 2022
    Assignee: Hitachi High-Tech Corporation
    Inventors: Akinari Morikawa, Kotaro Hosoya
  • Patent number: 11454626
    Abstract: The present invention relates to a method for single-cell imaging mass spectrometry (MS) by correlating an optical image of a cell sample with an MS image. The method of the invention is in particular useful in research to test concomitantly optical and molecular phenotypes at a single-cell resolution.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: September 27, 2022
    Assignee: EUROPEAN MOLECULAR BIOLOGY LABORATORY
    Inventors: Theodore Alexandrov, Luca Rappez
  • Patent number: 11448624
    Abstract: An ionization probe connection jig used to connect an outlet-side flow path of a column 113 and an inlet-side flow path of an ionization probe 211 in a liquid chromatograph, the ionization probe connection jig includes: a first element fixture 10 fixed to a first element 113 that is one of the column 113 and the ionization probe 211; a second element fixture 20 fixed to a second element 211 that is the other; and a movement regulating tool 30 that permits the first element fixture 10 to advance in an axial direction of the first element 113 while regulating the first element 113 or the first element fixture 10 and the second element 211 or the second element fixture 20 such that flow paths of the first element 113 and the second element 211 are matched with each other, and regulates the second element fixture 20 such that the second element fixture 20 does not retreat beyond a predetermined position in a axial direction of the second element 211.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: September 20, 2022
    Assignee: SHIMADZU CORPORATION
    Inventor: Wataru Fukui
  • Patent number: 11448607
    Abstract: Systems and methods are provided for dynamically compensating position errors of a sample. The system can comprise one or more sensing units configured to generate a signal based on a position of a sample and a controller. The controller can be configured to determine the position of the sample based on the signal and in response to the determined position, provide information associated with the determined position for control of one of a first handling unit in a first chamber, a second handling unit in a second chamber, and a beam location unit in the second chamber.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: September 20, 2022
    Assignee: ASML Netherlands B.V.
    Inventor: Chiyan Kuan
  • Patent number: 11442067
    Abstract: The invention relates to peptide mass fingerprinting technique for the proteins such as Human insulin and insulin analogs. The insulin analogues can vary at least by one amino acid, which is elusive to distinguish by currently available analytical methods. The invention further allows sequence confirmation of the peptide wherein the run time of the method is forty minutes. This method could be applied for molecules up to 50 kDa.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: September 13, 2022
    Inventors: Phanichand Kodali, Krishnappa Mane, Srivatsa Koduru, Ashutosh Sudhir Naik, Laxmi Adhikary
  • Patent number: 11435303
    Abstract: The present invention provides an X-ray analysis device and a peak search method capable of realizing highly accurate peak searches without significantly increasing a processing time. Peak search processing includes: a step (S220) for acquiring a profile of a spectrum; a step (S240) for narrowing down a wavelength range where a true value of a peak wavelength (peak intensity) may be present, taking into account statistical fluctuation of a measured value; a step (S250) for measuring the intensity of the X-rays at the long wavelength end, the short wavelength end, and the intermediate wavelength in the narrowed wavelength range; a step (S255) for calculating a quadratic function passing through the respective measured values in the above-described three wavelengths; and a step (S260) for calculating the wavelength of the vertex of the calculated quadratic function as the peak wavelength.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: September 6, 2022
    Assignee: Shimadzu Corporation
    Inventor: Hiroshi Sakamae
  • Patent number: 11437161
    Abstract: An apparatus includes an extreme ultraviolet light source vessel having an intermediate focus, a scanner having a light source aperture, and a deflection module arranged between the intermediate focus and the light source aperture. The deflection module includes a first electrode plate and a second electrode plate, configured to create an electric field therebetween. Tin particles moving from the intermediate focus to the light source aperture passes through the deflection module, and are deflected by the electric field therein.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Lin Chang, Chieh Hsieh, Shang-Chieh Chien, Han-Lung Chang, Heng-Hsin Liu, Li-Jui Chen, Chin-Hsiang Lin
  • Patent number: 11430647
    Abstract: Systems and approaches for semiconductor metrology and surface analysis using Secondary Ion Mass Spectrometry (SIMS) are disclosed. In an example, a secondary ion mass spectrometry (SIMS) system includes a sample stage. A primary ion beam is directed to the sample stage. An extraction lens is directed at the sample stage. The extraction lens is configured to provide a low extraction field for secondary ions emitted from a sample on the sample stage. A magnetic sector spectrograph is coupled to the extraction lens along an optical path of the SIMS system. The magnetic sector spectrograph includes an electrostatic analyzer (ESA) coupled to a magnetic sector analyzer (MSA).
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: August 30, 2022
    Assignee: NOVA MEASURING INSTRUMENTS, INC.
    Inventors: David A. Reed, Bruno W. Schueler, Bruce H. Newcome, Rodney Smedt, Chris Bevis
  • Patent number: 11422504
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: August 23, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Patent number: 11415547
    Abstract: A method of filtering ions according to their ion mobility using a device is disclosed, the method comprising a plurality of electrodes and one or more voltage source(s) arranged and adapted to apply voltages to the plurality of electrodes, the method comprising, generating using the one or more voltage source(s) one or more local separation region(s), wherein ions can be separated within each local separation region according to their ion mobility, and moving each local separation region axially along the device with a certain velocity such that, for each local separation region, ions having a value of their ion mobility falling within a selected range are transmitted axially along the device with that local separation region whereas ions having higher and/or lower ion mobility falling outside that range escape the local separation region, wherein any ions that escape the local separation region(s) are removed from within the device and/or otherwise kept apart from those ions falling within the selected rang
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: August 16, 2022
    Assignee: Micromass UK Limited
    Inventors: David J. Langridge, Jason Lee Wildgoose, Martin Raymond Green, Daniel James Kenny, Kevin Giles, Steven Derek Pringle
  • Patent number: 11415936
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: August 16, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Patent number: 11418228
    Abstract: A circuit and method for providing high-voltage radio-frequency (RF) energy to an instrument at multiple frequencies includes a plurality of inputs each configured to receive an RF voltage signal oscillating at a corresponding frequency, and a step-up circuit for generating magnified RF voltage signals based on the received RF voltage signals. The step-up circuit includes an LC network operable to isolate the RF voltage signals at the plurality inputs from one another while preserving a voltage magnification from each input to a common output at each of the corresponding frequencies.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: August 16, 2022
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventor: Michael J. Schoessow
  • Patent number: 11412607
    Abstract: An atomic beam generator includes a cathode constituted as a housing having an emission surface provided with an irradiation port through which an atomic beam is emissive; an anode disposed inside the cathode to generate plasma between the cathode and the anode; and a magnetic field generating unit including a first magnetic field generating unit that generates a first magnetic field and a second magnetic field generating unit that generates a second magnetic field, and guiding positive ions produced in the cathode to the emission surface by generating, in the cathode, the first magnetic field and the second magnetic field both parallel to the emission surface such that a magnetic field direction is leftward in the first magnetic field and is rightward in the second magnetic field when viewed from an emission surface side on condition of the first magnetic field being positioned above the second magnetic field.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: August 9, 2022
    Assignees: National University Corporation Tokai National Higher Education and Research System, NGK Insulators, Ltd.
    Inventors: Seiichi Hata, Junpei Sakurai, Yuuki Hirai, Hiroyuki Tsuji, Takayoshi Akao, Tomoki Nagae, Tomonori Takahashi
  • Patent number: 11404257
    Abstract: A method for measuring the chirality of molecules in a sample of chiral molecules, the sample including at least one chemical species, the method including the steps of: introducing the sample of chiral molecules into an ionisation area; ionising the molecules by electromagnetic radiation in the ionisation area; and detecting a distribution of electrons produced by ionisation and emitted at the front and back of the ionisation area relative to the axis, z, of propagation of the electromagnetic radiation; wherein the electromagnetic radiation is elliptically polarised, the ellipticity varying continuously and periodically as a function of time, the method further including a step of: determining the chirality of the molecules from the electron distribution detected continuously as a function of time. A system is also provided for measuring the chirality of molecules using such a method.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: August 2, 2022
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE BORDEAUX
    Inventors: Yann Mairesse, Antoine Comby
  • Patent number: 11396715
    Abstract: A single crystal diamond material comprising: neutral nitrogen-vacancy defects (NV0); negatively charged nitrogen-vacancy defects (NV?); and single substitutional nitrogen defects (Ns) which transfer their charge to the neutral nitrogen-vacancy defects (NV0) to convert them into the negatively charged nitrogen-vacancy defects (NV), characterized in that the single crystal diamond material has a magnetometry figure of merit (FOM) of at least 2, wherein the magnetometry figure of merit is defined by (I) where R is a ratio of concentrations of negatively charged nitrogen-vacancy defects to neutral nitrogen-vacancy defects ([NV?]/[NV0]), [NV?] is the concentration of negatively charged nitrogen-vacancy defects measured in parts-per-million (ppm) atoms of the single crystal diamond material, [NV0] is a concentration of neutral nitrogen-vacancy defects measured in parts-per-million (ppm) atoms of the single crystal diamond material, and T2? is a decoherence time of the NV? defects, where T2? is T2* for DC magnetome
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: July 26, 2022
    Assignees: Element Six Technologies Limited, Element Six Technologies US Corporation
    Inventors: Wilbur Lew, Gregory Bruce, Andrew Mark Edmonds, Matthew Lee Markham, Alastair Douglas Stacey, Harpreet Kaur Dhillon
  • Patent number: 11393666
    Abstract: A system comprises: first and second mass spectrometers; at least one liquid chromatograph configured to simultaneously supply a first stream of chromatographic eluate derived from a sample to the first mass spectrometer and a second stream of chromatographic eluate to the second mass spectrometer; and a computer or electronic controller electronically coupled to both of the first and second mass spectrometers and comprising computer-readable instructions operable to: input a mass spectrometric analysis of a chromatographic fraction of the sample obtained by the first mass spectrometer; determine whether an additional mass spectrometric analysis of the chromatographic fraction of the sample is required, based on the mass spectrometric analysis of the chromatographic fraction obtained by the first mass spectrometer; and, if the determination is affirmative, cause the second mass spectrometer to perform, after a time delay, the additional mass spectrometric analysis of the chromatographic fraction of the sample
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: July 19, 2022
    Assignee: THERMO FINNIGAN LLC
    Inventor: Bennett S. Kalafut
  • Patent number: 11387074
    Abstract: A charged particle beam optical apparatus has a plurality of irradiation optical systems each of which irradiates an object with a charged particle beam and a first control apparatus configured to control a second irradiation optical system on the basis of an operation state of a first irradiation optical system.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: July 12, 2022
    Assignee: NIKON CORPORATION
    Inventor: Hiroyuki Nagasaka
  • Patent number: 11387073
    Abstract: A system and method that is capable of measuring the incident angle of an ion beam, especially an ion beam comprising heavier ions, is disclosed. In one embodiment, X-rays, rather than ions, are used to determine the channeling direction. In another embodiment, the workpiece is constructed, at least in part, of a material having a high molecular weight such that heaver ion beams can be measured. Further, in another embodiment, the parameters of the ion beam are measured across an entirety of the beam, allowing components of the ion implantation system to be further tuned to create a more uniform beam.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: July 12, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Frank Sinclair, Jonathan Gerald England, Joseph C. Olson
  • Patent number: 11387094
    Abstract: A time-of-flight (ToF) mass spectrometer, comprising: a pulsed ion injector for forming an ion beam that travels along an ion path; a detector for detecting ions in the ion beam that arrive at the detector at times according to their m/z values; an ion focusing arrangement located between the ion injector and the detector for focusing the ion beam in at least one direction orthogonal to the ion path; and a variable voltage supply for supplying the ion focusing arrangement with at least one variable voltage that is dependent on a charge state and/or an amount of ions of at least one species of ions in the ion beam. A corresponding method of mass spectrometry is provided. The charge state and/or an amount of ions may be acquired from a pre-scan, or predicted. Tuning of the spectrometer based on a charge state and/or an amount of ions of at least one species of ions in the ion beam may be performed on the fly.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: July 12, 2022
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventors: Hamish Stewart, Dmitry E. Grinfeld, Alexander A. Makarov