Patents Examined by Marianne Padgett
  • Patent number: 6767593
    Abstract: A deposited film-forming apparatus comprising a reaction chamber capable of being vacuumed in which glow discharge is caused by means of a high frequency power supplied by a high frequency power introduction means to form a deposited film on a substrate positioned in said reaction chamber, wherein said high frequency power introduction means comprises an insulating material as a base constituent and has a region isolated from a glow discharge zone of said reaction chamber by means of said insulating material wherein an electrode comprising an electrically conductive metallic material having a thickness capable of sufficiently transmitting said high frequency power is disposed in said region such that it is contacted with said insulating material in a state with no clearance. A deposited film-forming process using said deposited film-forming apparatus.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: July 27, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazuyoshi Akiyama
  • Patent number: 6759098
    Abstract: Low dielectric constant film materials with improved elastic modulus. The method of making such film materials involves providing a porous methyl silsesquioxane based dielectric film material produced from a resin molecule containing at least 2 Si—CH3 groups and plasma curing the porous film material to convert the film into porous silica. Plasma curing of the porous film material yields a film with improved modulus and outgassing properties. The improvement in elastic modulus is typically greater than or about 100%, and more typically greater than or about 200%. The plasma cured porous film material can optionally be annealed. The annealing of the plasma cured film may reduce the dielectric constant of the film while maintaining an improved elastic modulus as compared to the plasma cured porous film material. The annealed, plasma cured film has a dielectric constant between about 1.1 and about 2.4 and an improved elastic modulus.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: July 6, 2004
    Assignees: Axcelis Technologies, Inc., Chemat Technology, Inc.
    Inventors: Qingyuan Han, Carlo Waldfried, Orlando Escorcia, Ralph Albano, Ivan L. Berry, III, Jeff Jang, Ian Ball
  • Patent number: 6749903
    Abstract: An apparatus for irradiating an article, particularly a multi-layer article, with electron beam radiation is provided. The apparatus contains a window having a short unit path length and allows for controlled irradiation of an article such that upper portions of the article receive significantly higher electron beam dosages than lower portions of the article. Such differential dosage allows for modification of an article comprising a coating composition that can be modified by electron beam irradiation on a substrate that is vulnerable to degradation from electron beam radiation. A method of irradiating an article with electron beams, and products manufactured using the apparatus and method of the invention, are also disclosed.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: June 15, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Douglas Eugene Weiss, James Patrick DiZio, Harvey William Kalweit, Roy G. Schlemmer, Bruce Alan Sventek
  • Patent number: 6746724
    Abstract: The present invention is directed to a system for marking objects for their identification which marks survive elevated temperatures of, say, up to 600° to 800° F. or higher, for extended periods of time. The inventive system for marking workpieces for their identification includes a laser that emits a beam select band of radiation and a coating system for application to a workpiece to be marked. The coating system includes two coats of paint, a topcoat and a basecoat which paints have been coated sequentially on the workpiece. The basecoat is an at least partially-cured, laser-blackenable paint which has been marked with fragile product identification indicia by the laser beam, after which a clear topcoat has been applied thereover. The laser generates fragile product identification indicia on the workpiece by its beam being directed onto the basecoat for its blackening to generate the fragile product identification indicia by the selective charring of said basecoat.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: June 8, 2004
    Assignee: Infosight Corporation
    Inventors: John A. Robertson, Edward S. O'Neal
  • Patent number: 6743481
    Abstract: A multilayer coating of fullerene molecules is deposited on a substrate, and layers of the multilayer coating are removed leaving an approximate monolayer coating of fullerene molecules on the substrate. In some embodiments, a beam generator, such as an ion beam, electron beam or laser generator, produces a beam arranged to break the weaker fullerene-to-fullerene intermolecular bond of the multilayer coating and inadequate to break the stronger fullerene-to-substrate association/bond of the coating. The beam is directed at the multilayer coating to break the fullerene-to-fullerene intermolecular bond. In other embodiments, the monolayer of fullerene molecules is formed by applying a solvent to the multilayer coating to break the fullerene-to-fullerene intermolecular bond of the multilayer coating.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: June 1, 2004
    Assignee: Seagate Technology LLC
    Inventors: Joel W. Hoehn, John W. Dykes, James E. Angelo, William D. Mosley, Richard T. Greenlee, Brian W. Karr
  • Patent number: 6737121
    Abstract: According to an exemplary embodiment of the invention, a method of forming a plurality of layers on an article comprises steps of generating a plasma by forming an arc between a cathode and an anode; injecting a first material comprising an organic compound into the plasma to deposit a first layer on the article; injecting a second material comprising an organometallic material into the plasma to form a second layer on the first layer; and injecting a third material comprising a silicon containing organic compound into the plasma to deposit a third layer on the second layer. The invention also relates to an article of manufacture comprising a substrate; an interlayer disposed on the substrate; a second layer disposed on the interlayer, the second layer comprising an inorganic ultraviolet absorbing material; and a third layer disposed on the second layer, the third layer comprising an abrasion resistant material.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: May 18, 2004
    Assignee: General Electric Company
    Inventors: Barry Lee-Mean Yang, Charles Dominic Iacovangelo
  • Patent number: 6730369
    Abstract: The vacuum processing chambers 31 of the plasma processing units 3A and 3B are connected to the transfer chamber 2 and the wafer W in the positioned state is transferred from the transfer chamber 2 to the mounting stages 4 in the vacuum processing chambers 31. The volume and length of the wave guide 5 are the same between the plasma processing units 3A and 3B. The location relationship of the wave guide 5 to the transfer directions M1 and M2 of the transfer arm 61 is the same between the plasma processing units 3A and 3B. As a result, the location relationship of the wave guide 5 to the wafer W mounted on the mounting stage 4 in a predetermined direction is the same between the plasma processing units 3A and 3B.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: May 4, 2004
    Assignee: Tokyo Electron Limited
    Inventor: Hideaki Amano
  • Patent number: 6730370
    Abstract: A method and apparatus for locally raising the temperature of a material in order to facilitate chemical reactions or processes related to growth or removal of the material utilizes an electrode to apply, in the presence of a growth or removal medium, a controlled succession of thermal spikes or shockwaves of varying energy. The scale of the thermal spikes or shockwaves, and the area of the material affected by the resulting energy transfer, is on the order of a few nanometers to several hundred micrometers, and the duration of the thermal spikes or shockwaves ranges from a few picoseconds to several hundred nanoseconds. The growth or removal medium may be a cryogenic liquid, although other growth media, including liquids, solids, gases in critical or non-critical state, and mixtures of liquids and solids, solids and gases, and liquids and gases, may also be employed.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: May 4, 2004
    Inventor: Sveinn Olafsson
  • Patent number: 6723390
    Abstract: Devices and methods for fabricating medical devices are disclosed. A device in accordance with the present inventions includes a laser beam source capable of producing a laser beam, a carrier coupled to a carrier motion actuator capable of moving the carrier relative to the laser beam, and a workpiece motion actuator capable of moving a workpiece relative the laser beam. A method in accordance with the present invention includes the steps of positioning the carrier between the laser beam source and the workpiece, illuminating a portion of the carrier with the laser beam, moving the carrier relative to the laser beam, and moving the workpiece relative to the laser beam.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: April 20, 2004
    Assignee: SciMed Life Systems, Inc.
    Inventors: Kenneth M. Merdan, Vitaliy N. Shapovalov
  • Patent number: 6720037
    Abstract: In a plasma processing method, on a back side of a cathode electrode is provided at least one conductor plate d.c. potentially insulated from the cathode electrode and an opposing electrode, and the cathode electrode and the conductor plate are enclosed with a shielding wall such that a ratio of an inter-electrode coupling capacitance provided by the cathode electrode and the opposing electrode to a coupling capacitance provided by the cathode electrode and a bottom surface of the shielding wall on the back side of the conductor plate is not less than a predetermined value. Thereby, a high-quality, high-speed plasma processing is realized.
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: April 13, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yukito Aota, Masahiro Kanai
  • Patent number: 6712019
    Abstract: A deposited film-forming apparatus comprising a reaction chamber capable of being vacuumed in which glow discharge is caused by means of a high frequency power supplied by a high frequency power introduction means to form a deposited film on a substrate positioned in said reaction chamber, wherein said high frequency power introduction means comprises an insulating material as a base constituent and has a region isolated from a glow discharge zone of said reaction chamber by means of said insulating material wherein an electrode comprising an electrically conductive metallic material having a thickness capable of sufficiently transmitting said high frequency power is disposed in said region such that it is contacted with said insulating material in a state with no clearance. A deposited film-forming process using said deposited film-forming apparatus.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: March 30, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazuyoshi Akiyama
  • Patent number: 6709715
    Abstract: A method and apparatus for depositing a low dielectric constant film by plasma assisted copolymerization of p-xylylene and a comonomer having carbon-carbon double bonds at a constant RF power level from about 0W to about 100W or a pulsed RF power level from about 20W to about 160W. The copolymer film has a dielectric constant from about 2.2 to about 2.5. Preferred comonomers include tetravinyltetramethylcyclotetrasiloxane, tetraallyloxysilane, and trivinylmethylsilane. The copolymer films include at least 1% by weight of the comonomer.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: March 23, 2004
    Assignee: Applied Materials Inc.
    Inventors: Chi-I Lang, Shin-Puu Jeng, Yeming Jim Ma, Fong Chang, Peter Wai-Man Lee, David W. Cheung
  • Patent number: 6709720
    Abstract: A method of marking materials, wherein the surface of a marking material and the surface of a material to be marked are matched, a laser beam is applied to the marking material while scanning the beam to form a mark, the material to be marked consisting a transparent body on which a pattern of a character or the like is formed. The method for marking comprises a first step of applying the laser beam to the marking material with the first laser power to evaporate the marking material and make them deposit to a predetermined part of the material to be marked, a second step of applying a laser beam to the deposited matter on the material to be marked with a second laser power to remove or transform the deposited mater. Steel or stainless steel is used as the marking materials.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: March 23, 2004
    Assignees: Kabushiki Kaisha Yaskawa Denki, Ye Data Inc.
    Inventors: Hirotoshi Hayakawa, Shuichi Takanami
  • Patent number: 6709718
    Abstract: A method is provided for surface treating a porous sheet material. The surface treatment involves contacting at least one porous surface of the film with plasma at atmospheric pressure and a plasma generating electrode frequency of greater than 1 MHz. This method provides treatment which penetrates into the pores of the sheet material.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: March 23, 2004
    Assignee: ExxonMobil Oil Corporation
    Inventor: Jeffrey J. O'Brien
  • Patent number: 6703081
    Abstract: Vacuum treatment installation with a vacuum treatment chamber containing a plasma discharge configuration as well as a gas supply configuration. The plasma discharge configuration has at least two plasma beam discharge configurations with substantially parallel discharge axes and a deposition configuration is positioned along a surface which extends at predetermined distances from the beam axes and along a substantial section of the longitudinal extent of the discharge beam.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: March 9, 2004
    Assignee: Unaxis Balzers Aktiengesellschaft
    Inventors: Johann Karner, Mauro Pedrazzini
  • Patent number: 6699530
    Abstract: The construction of a film on a wafer, which is placed in a processing chamber, may be carried out through the following steps. A layer of material is deposited on the wafer. Next, the layer of material is annealed. Once the annealing is completed, the material may be oxidized. Alternatively, the material may be exposed to a silicon gas once the annealing is completed. The deposition, annealing, and either oxidation or silicon gas exposure may all be carried out in the same chamber, without need for removing the wafer from the chamber until all three steps are completed. A semiconductor wafer processing chamber for carrying out such an in-situ construction may include a processing chamber, a showerhead, a wafer support and a rf signal means. The showerhead supplies gases into the processing chamber, while the wafer support supports a wafer in the processing chamber.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: March 2, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Michal Danek, Marvin Liao, Eric Englhardt, Mei Chang, Yeh-Jen Kao, Dale R. DuBois, Alan F. Morrison
  • Patent number: 6699531
    Abstract: In a case where a CF film is used as an interlayer dielectric film for a semiconductor device, when a wiring of tungsten is formed, the CF film is heated to a temperature of, e.g., about 400 to 450° C. At this time, a F gas is released from the CF film, so that there are various disadvantages due to the corrosion of the wiring and the decrease of film thickness. In order to prevent this, thermostability is enhanced. A compound gas of C and F, e.g., C4F8 gas, and a hydrocarbon gas, e.g., C2H4 gas, are used as thin film deposition gases. These gases are activated as plasma to deposit a CF film on a semiconductor wafer 10 using active species thereof. Then, a hydrogen plasma producing gas, e.g., H2 gas, is introduced to be activated as plasma, and the CF film deposited on the wafer 10 is irradiated with the H plasma.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: March 2, 2004
    Assignee: Tokyo Electron Limited
    Inventor: Noriaki Fukiage
  • Patent number: 6696108
    Abstract: A vacuum processing method comprises placing an article to be processed in a reaction container and simultaneously supplying at least two high-frequency powers having mutually different frequencies to the same high-frequency electrode to generate plasma in the reaction container by the high-frequency powers admitted into the reaction container from the high-frequency electrode so as to process the article to be processed. In the method, at least the high-frequency power having a frequency f1 and the high-frequency power having a frequency f2 are used and satisfy the following two conditions as the high-frequency powers: 250 MHz≧f1>f2≧10 MHz 0.9≧f2/f1≧0.1.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: February 24, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hitoshi Murayama, Toshiyasu Shirasuna, Hiroaki Niino, Makoto Aoki
  • Patent number: 6692794
    Abstract: This invention provides a composite having a hydrophilic film made of amorphous titanium oxide. A film is deposited on a substrate made of, for example, glass or synthetic resin. The film is composed of amorphous titanium oxide partially having structures in which a network of Ti—O—Ti bond is broken to give Ti—OH bond terminals.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: February 17, 2004
    Assignee: Murakami Corporation
    Inventors: Masatoshi Nakamura, Yoshinori Hatanaka
  • Patent number: 6689426
    Abstract: A liquid compound or a compound solution is kept in contact with the surface of a solid material (synthetic resin, glass, metal, or ceramic), radiation selected from ultraviolet, visible, and infrared is irradiated on the interface between the surface of the solid material and the compound to optically excite the surface of the solid material and the compound, thereby effecting substitution with a chemical species in the compound, depositing or performing etching with the chemical species. Preferably, a transparent window is kept in tight contact with the surface of a solid material to be treated, a thin layer of the liquid compound or the compound solution is interposed between the surface of the solid material and the transparent window by using capillarity, and ultraviolet, visible, or infrared is irradiated through the window. With this treatment, the irradiated portion can be given hydrophilicity, adhesion properties, printing properties, corrosion resistance, and conductivity.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: February 10, 2004
    Assignees: Tokai University, Nitto Denko Corp.
    Inventors: Masataka Murahara, Masakatsu Urairi