Patents Examined by Mark Hatzilambrou
  • Patent number: 11532622
    Abstract: The present disclosure describes a method for the formation of gate-all-around nano-sheet FETs with tunable performance. The method includes disposing a first and a second vertical structure with different widths over a substrate, where the first and the second vertical structures have a top portion comprising a multilayer nano-sheet stack with alternating first and second nano-sheet layers. The method also includes disposing a sacrificial gate structure over the top portion of the first and second vertical structures; depositing an isolation layer over the first and second vertical structures so that the isolation layer surrounds a sidewall of the sacrificial gate structure; etching the sacrificial gate structure to expose each multilayer nano-sheet stack from the first and second vertical structures; removing the second nano-sheet layers from each exposed multilayer nano-sheet stack to form suspended first nano-sheet layers; forming a metal gate structure to surround the suspended first nano-sheet layers.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tetsu Ohtou, Ching-Wei Tsai, Jiun-Jia Huang, Kuan-Lun Cheng, Chi-Hsing Hsu
  • Patent number: 11527707
    Abstract: A method for forming a memory device that includes providing a free layer of an alloy of cobalt (Co), iron (Fe) and boron (B) overlying a reference layer; and forming metal layer comprising a boron (B) sink composition atop the free layer. Boron (B) may be diffused from the free layer to the metal layer comprising the boron sink composition. At least a portion of the metal layer including the boron (B) sink composition is removed. A metal oxide is formed atop the free layer. The free layer may be a crystalline cobalt and iron alloy. An interface between the metal oxide and free layer can provide perpendicular magnetic anisotropy character.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: December 13, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen L. Brown, Guohan Hu, Jonathan Z. Sun, Daniel C. Worledge
  • Patent number: 11502094
    Abstract: A semiconductor device includes a string of transistors stacked along a vertical direction above a substrate of the semiconductor device. The string can include a first substring, a channel connector disposed above the first substring, and a second substring. The first substring includes a first channel structure having a first channel layer and a first gate dielectric structure that extend along the vertical direction. The second substring is stacked above the channel connector, and has a second channel structure that includes a second channel layer and a second gate dielectric structure that extend along the vertical direction. The channel connector, electrically coupling the first and the second channel layer, is disposed below the second gate dielectric structure to enable formation of a conductive path in a bottom region of the second channel layer. The bottom region is associated with a lowermost transistor in the second substring.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: November 15, 2022
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Ruo Fang Zhang, Enbo Wang, Haohao Yang, Qianbing Xu, Yushi Hu, Qian Tao
  • Patent number: 11495668
    Abstract: Semiconductor devices and method of forming the same include recessing sacrificial layers relative to the channel layers, in a stack of vertically aligned, alternating sacrificial layers and channel layers, to form first recesses. A dual-layer dielectric is deposited that includes a first dielectric material formed conformally on surfaces of the recesses and a second dielectric material filling a remainder of the first recesses. The first dielectric material is recessed relative to the second dielectric material to form second recesses. Additional second dielectric material is deposited to fill the second recesses. The second dielectric material and the additional second dielectric material is etched away to create air gaps.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: November 8, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Pouya Hashemi, Choonghyun Lee, Alexander Reznicek, Jingyun Zhang
  • Patent number: 11495669
    Abstract: Semiconductor devices include a stack of vertically arranged channel layers. A gate stack is formed above, between, and around the vertically arranged channel layers. Source and drain regions and source and drain conductive contacts are formed. Inner spacers are formed between the vertically arranged channel layers, each having an inner air gap and a recessed layer formed from a first dielectric material. Outer spacers are formed between the gate stack and the source and drain conductive contacts, each having a second dielectric material that is pinched off to form an outer air gap.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: November 8, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Pouya Hashemi, Choonghyun Lee, Alexander Reznicek, Jingyun Zhang
  • Patent number: 11489091
    Abstract: A semiconductor light emitting device includes a light extraction layer having a light extraction surface. The light extraction layer includes: a plurality of cone-shaped parts formed in an array on the light extraction surface, and a plurality of granular parts formed both on a side part of the cone-shaped part and in a space between adjacent cone-shaped parts. A method of manufacturing the semiconductor light emitting device includes: forming a mask having an array pattern on the light extraction layer; and etching the mask and the light extraction layer from above the mask. The etching includes first dry-etching performed until an entirety of the mask is removed and second dry-etching performed to further dry-etch the light extraction layer after the mask is removed.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: November 1, 2022
    Assignees: NIKKISO CO., LTD., SCIVAX CORPORATION
    Inventors: Noritaka Niwa, Tetsuhiko Inazu, Yasumasa Suzaki, Akifumi Nawata, Satoru Tanaka
  • Patent number: 11456378
    Abstract: The disclosure reduces the risk of collapse of the wall surrounding the trench and suppresses the withstand voltage fluctuation that accompanies the manufacturing variation for a semiconductor device having a super junction structure. The semiconductor device includes a drift layer of a first conductivity type and a plurality of embedded parts embedded in the drift layer. The embedded parts are of a second conductivity type different from the first conductivity type, and the embedded parts are arranged with a first direction as a longitudinal direction and spaced from each other along a second direction that intersects the first direction. A width of each of the embedded parts in the second direction changes continuously along the first direction.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: September 27, 2022
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventors: Toshiyuki Orita, Tomomi Yamanobe, Makoto Higashihira, Yuuki Doi, Toshifumi Kobe, Masao Tsujimoto, Takao Kaji, Kiyofumi Kondou
  • Patent number: 11444203
    Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a capacitor comprises a crystalline polar layer comprising a base polar material substitutionally doped with a dopant. The base polar material comprises one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element of one of 4d series, 5d series, 4f series or 5f series that is different from the one or more metal elements, such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: September 13, 2022
    Assignee: Kepler Computing Inc.
    Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
  • Patent number: 11444185
    Abstract: A bipolar junction transistor (LBJT) device that includes a base region of a first III-V semiconductor material having A first band gap; and emitter and collector regions present on opposing sides of the base region, wherein the emitter and collector regions are comprised of a second III-V semiconductor material having a wider band gap than the first III-V semiconductor material. A dielectric region is present underlying the base region, emitter region and the collect region. The dielectric region has an inverted apex geometry. The sidewalls of dielectric region that extend to the apex of the inverted apex geometry are present on facets of a supporting substrate III-V semiconductor material having a {110} crystalline orientation.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: September 13, 2022
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Mahmoud Khojasteh, Tak H. Ning, Alexander Reznicek
  • Patent number: 11437502
    Abstract: A bipolar junction transistor (LBJT) device that includes a base region of a first III-V semiconductor material having A first band gap; and emitter and collector regions present on opposing sides of the base region, wherein the emitter and collector regions are comprised of a second III-V semiconductor material having a wider band gap than the first III-V semiconductor material. A dielectric region is present underlying the base region, emitter region and the collect region. The dielectric region has an inverted apex geometry. The sidewalls of dielectric region that extend to the apex of the inverted apex geometry are present on facets of a supporting substrate III-V semiconductor material having a {110} crystalline orientation.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: September 6, 2022
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Mahmoud Khojasteh, Tak H. Ning, Alexander Reznicek
  • Patent number: 11387400
    Abstract: An electronic module includes a substrate that includes a first main surface and a second main surface, at least one first electronic component that includes electrodes on a mounting surface thereof on the substrate and that includes a hollow portion, at least one second electronic component that includes electrodes on a mounting surface thereof on the substrate and that includes no hollow portion, and a sealing resin. The at least one first electronic component is mounted on the first main surface of the substrate and sealed with the sealing resin. The at least one second electronic component is mounted on the second main surface of the substrate and is not sealed with the sealing resin.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: July 12, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Junpei Yasuda
  • Patent number: 11355548
    Abstract: A first component with a first sidewall and a second component with a second sidewall may be mounted onto an expandable film such that an original distance X is the distance between the first sidewall and the second sidewall. The expandable film may be expanded such that an expanded distance Y is the distance between the first sidewall and the second sidewall and expanded distance Y is greater than original distance X. A first sidewall material may be applied within at least a part of a space between the first sidewall and the second sidewall. The expandable film may be expanded such that a contracted distance Z is the distance between the first sidewall and the second sidewall, and contracted distance Z is less than expanded distance Y.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: June 7, 2022
    Assignee: Lumileds LLC
    Inventors: Tze Yang Hin, Yu-Chen Shen, Luke Gordon, Danielle Russell Chamberlin, Daniel Bernardo Roitman
  • Patent number: 11335835
    Abstract: An optical isolation material may be applied to walls of a first cavity and a second cavity in a wafer mesh. A wavelength converting layer may be deposited into the first cavity to create a first segment and into the second cavity to create a second segment. The first segment may be attached to a first light emitting device to create a first pixel and the second segment to a second light emitting device to create a second pixel. The wafer mesh may be removed.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: May 17, 2022
    Assignee: Lumileds LLC
    Inventors: Danielle Russell Chamberlin, Erik Maria Roeling, Sumit Gangwal, Niek Van Leth, Oleg Borisovich Shchekin
  • Patent number: 11335766
    Abstract: A transparent thin film display element (100) with a display region(101), and a transition region (105) having a first edge (106) bordering the display region and a second edge (107) opposite to the first edge, the transparent display element having a layer stack (103) comprises:a first conductor layer (110); a second conductor layer (120); and an emissive layer (130) superposed between the first and the second conductor layers and configured to emit light upon electrical current flowing through the emissive layer between the first and the second conductor layers. At least one layer (120) of a group comprising the first and the second conductor layers and the emissive layer has, in the transition region (105), a first coverage at the first edge (106), a second coverage lower than the first coverage at the second edge (107), and an intermediate coverage lying between the first and the second coverage.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: May 17, 2022
    Assignee: Lumineq Oy
    Inventors: Pertti Malvaranta, Asta Ollila, Jukka Lammi, Kari Härkönen, Mikko Saikkonen
  • Patent number: 11296252
    Abstract: Methods and apparatus for forming a bond pad of a semiconductor device such as a backside illuminated (BSI) image sensor device are disclosed. The substrate of a device may have an opening at the backside, through the substrate reaching the first metal layer at the front side of the device. A buffer layer may be formed above the backside of the substrate and covering sidewalls of the substrate opening. A pad metal layer may be formed above the buffer layer and in contact with the first metal layer at the bottom of the substrate opening. A bond pad may be formed in contact with the pad metal layer. The bond pad is connected to the pad metal layer vertically above the substrate, and further connected to the first metal layer of the device at the opening of the substrate.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: April 5, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Ching-Hung Cheng
  • Patent number: 11276693
    Abstract: A semiconductor device and method of forming the same are disclosed. The method of forming a semiconductor device includes providing a substrate, an isolation structure over the substrate, and at least two fins extending from the substrate and through the isolation structure; etching the at least two fins, thereby forming at least two trenches; growing first epitaxial features in the at least two trenches; growing second epitaxial features over the first epitaxial features in a first growth condition; and after the second epitaxial features reach a target critical dimension, growing the second epitaxial features in a second growth condition different from the first growth condition.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: March 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Li-Wei Chou, Ming-Hua Yu
  • Patent number: 11257832
    Abstract: A semiconductor memory device according to an embodiment, includes a semiconductor pillar extending in a first direction, a first electrode extending in a second direction crossing the first direction, a second electrode provided between the semiconductor pillar and the first electrode, a first insulating film provided between the first electrode and the second electrode and on two first-direction sides of the first electrode, a second insulating film provided between the second electrode and the first insulating film and on two first-direction sides of the second electrode, a third insulating film provided between the second electrode and the semiconductor pillar, and a conductive film provided inside a region interposed between the first insulating film and the second insulating film.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: February 22, 2022
    Assignee: Kioxia Corporation
    Inventors: Tatsuya Kato, Fumitaka Arai, Katsuyuki Sekine, Toshiyuki Iwamoto, Yuta Watanabe, Wataru Sakamoto, Hiroshi Itokawa
  • Patent number: 11251348
    Abstract: Described herein are LED chips comprising pluralities of active regions on the same submount. These active regions are individually addressable, such that beam output from the LEDs can be controlled simply by selectively activating the desired active region in the plurality without resorting to incorporation of advanced optics and reflectors comprising complex moving parts. In some embodiments, one or more active regions can surround one or more other active regions. In some embodiments, the various active regions are individually addressable by virtue of each active region comprising its own anode and sharing a common cathode. In some embodiments, the various active regions are individually addressable by virtue of each active region comprising its own cathode and sharing a common anode. In some embodiments, each active region comprises its own anode and its own cathode.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: February 15, 2022
    Assignee: CREELED, INC.
    Inventors: Thomas Place, Kevin Ward Haberern
  • Patent number: 11177239
    Abstract: A semiconductor device including control switches enabling a semiconductor die in a stack of semiconductor die to send or receive a signal, while electrically isolating the remaining die in the die stack. Parasitic pin cap is reduced or avoided by electrically isolating the non-enabled semiconductor die in the die stack.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: November 16, 2021
    Assignee: SanDisk Information Technology (Shanghai) Co., Ltd.
    Inventors: Shineng Ma, Chin-Tien Chiu, Chih-Chin Liao, Ye Bai, Yazhou Zhang, Yanwen Bai, Yangming Liu
  • Patent number: 11075295
    Abstract: A metal-oxide-semiconductor field-effect transistor includes a wide bandgap substrate, a wide bandgap drift layer over the substrate, a number of junction implants in the drift layer, and a JFET region between the junction implants. The JFET region is defined by a JFET gap, which is the distance between adjacent ones of the junction implants. The JFET gap is not uniform throughout the MOSFET device. The JFET region is separated into a first JFET sub-region and a second JFET sub-region, such that a doping concentration in the first JFET sub-region is different from a doping concentration in the second JFET sub-region.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: July 27, 2021
    Assignee: Cree, Inc.
    Inventor: Sei-Hyung Ryu