Patents Examined by Mark Hatzilambrou
  • Patent number: 10615271
    Abstract: A bipolar junction transistor (LBJT) device that includes a base region of a first III-V semiconductor material having A first band gap; and emitter and collector regions present on opposing sides of the base region, wherein the emitter and collector regions are comprised of a second III-V semiconductor material having a wider band gap than the first III-V semiconductor material. A dielectric region is present underlying the base region, emitter region and the collect region. The dielectric region has an inverted apex geometry. The sidewalls of dielectric region that extend to the apex of the inverted apex geometry are present on facets of a supporting substrate III-V semiconductor material having a {110} crystalline orientation.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pouya Hashemi, Mahmoud Khojasteh, Tak H. Ning, Alexander Reznicek
  • Patent number: 10600830
    Abstract: A sensor package structure includes a substrate, a sensor chip disposed on the substrate, a plurality of wires electrically connected to the substrate and the sensor chip, a transparent layer facing the sensor chip, a support disposed on the substrate, and a packaging compound disposed on the substrate and covering side edges of the support and the transparent layer. A part of each wire is embedded in the support. A height from the upper surface of the substrate to the top of the support is larger than a height from the upper surface of the substrate to the top of any of the wires. The bottom surface of the transparent layer has a central region facing the sensor chip and a ring-shaped supporting region surrounded by the central region. The support is arranged outside the sensor chip and abuts against the supporting region.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: March 24, 2020
    Assignee: KINGPAK TECHNOLOGY INC.
    Inventors: Jian-Ru Chen, Jo-Wei Yang, Li-Chun Hung, Hsiu-Wen Tu, Chung-Hsien Hsin
  • Patent number: 10570005
    Abstract: The disclosure provides methods and apparatus for release-assisted microcontact printing of MEMS. Specifically, the principles disclosed herein enable patterning diaphragms and conductive membranes on a substrate having articulations of desired shapes and sizes. Such diaphragms deflect under applied pressure or force (e.g., electrostatic, electromagnetic, acoustic, pneumatic, mechanical, etc.) generating a responsive signal. Alternatively, the diaphragm can be made to deflect in response to an external bias to measure the external bias/phenomenon. The disclosed principles enable transferring diaphragms and/or thin membranes without rupturing.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: February 25, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Apoorva Murarka, Vladimir Bulovic, Sarah Paydavosi
  • Patent number: 10553696
    Abstract: Semiconductor devices and method of forming the same include forming a stack of vertically aligned, alternating layers including sacrificial layers and channel layers. The sacrificial layers are recessed relative to the channel layers to form recesses. A dual-layer dielectric is deposited. The dual-layer dielectric includes a first dielectric material formed conformally on surfaces of the recesses and a second dielectric material filling a remainder of the recesses. The first dielectric material is recessed relative to the second dielectric material. The second dielectric material is etched away to create air gaps. Outer spacers are formed using a third dielectric material that pinches off, preventing the third dielectric material from filling the air gaps.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: February 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takashi Ando, Pouya Hashemi, Choonghyun Lee, Alexander Reznicek, Jingyun Zhang
  • Patent number: 10553781
    Abstract: A method for forming a memory device that includes providing a free layer of an alloy of cobalt (Co), iron (Fe) and boron (B) overlying a reference layer; and forming metal layer comprising a boron (B) sink composition atop the free layer. Boron (B) may be diffused from the free layer to the metal layer comprising the boron sink composition. At least a portion of the metal layer including the boron (B) sink composition is removed. A metal oxide is formed atop the free layer. The free layer may be a crystalline cobalt and iron alloy. An interface between the metal oxide and free layer can provide perpendicular magnetic anisotropy character.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: February 4, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen L. Brown, Guohan Hu, Jonathan Z. Sun, Daniel C. Worledge
  • Patent number: 10504957
    Abstract: A semiconductor device includes a semiconductor substrate having a plurality of Hall elements formed therein, and a magnetic body formed on the semiconductor substrate and having a magnetic flux converging function. The contour in a vertical cross section of the magnetic body on the semiconductor substrate has an outer circumferential portion. At least a part of the outer circumferential portion has a curve-shaped portion and a portion substantially parallel to the semiconductor substrate. A gap is formed between the semiconductor substrate and the portion of the magnetic body that is substantially parallel to the semiconductor substrate, and the gap lies above the entire top surfaces of the Hall elements. The magnetic body has at least a part of a structure made of non-magnetic substance embedded therein.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: December 10, 2019
    Assignee: ABLIC Inc.
    Inventors: Matsuo Kishi, Miei Takahama (nee Sato), Hiroshi Takahashi, Mika Ebihara, Takaaki Hioka
  • Patent number: 10490552
    Abstract: A semiconductor device includes a substrate, an isolation structure over the substrate, two fins over the substrate and protruding out of the isolation structure, and an epitaxial feature over the two fins. The epitaxial feature includes two lower portions and one upper portion. The two lower portions are over the two fins respectively. The upper portion is over the two lower portions and connects the two lower portions. The upper portion has a different dopant concentration than the two lower portions. A top surface of the upper portion is substantially flat.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: November 26, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Li-Wei Chou, Ming-Hua Yu
  • Patent number: 10468553
    Abstract: A semiconductor comprising at least one contact, formed on an interface with the semiconductor, the contact comprising at least a layer of a first metal, the first metal being of sufficient amount to impart a first property in the layer; and a second metal diffused in the layer, the second metal having a concentration in the layer sufficiently low such that the second metal does not diminish significantly the first property of the layer, the concentration being sufficiently high such that the second metal imparts significantly a second property in the layer.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 5, 2019
    Assignee: SORAA, INC.
    Inventor: Christophe A. Hurni
  • Patent number: 10453951
    Abstract: A trench-gate semiconductor device including an outside trench, increases reliability of an insulating film at a corner of an open end of the outside trench. The semiconductor device includes: a gate trench reaching an inner part of an n-type drift layer in a cell region; an outside trench outside the cell region; a gate electrode formed inside the gate trench through a gate insulating film; a gate line formed inside the outside trench through an insulating film; and a gate line leading portion formed through the insulating film to cover a corner of an open end of the outside trench closer to the cell region, and electrically connecting the gate electrode to the gate line, and the surface layer of the drift layer in contact with the corner has a second impurity region of p-type that is a part of the well region.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: October 22, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yutaka Fukui, Yasuhiro Kagawa, Kensuke Taguchi, Nobuo Fujiwara, Katsutoshi Sugawara, Rina Tanaka
  • Patent number: 10453545
    Abstract: According to one embodiment, a magnetic memory device includes a first magnetic portion extending in a first direction, a first magnetic layer, and a first nonmagnetic layer provided between the first magnetic layer and a portion of the first magnetic portion. The first magnetic portion has a first surface. The first surface includes bottom portions, and top portions. The bottom portions and the top portions are arranged alternately in the first direction. The bottom portions include a first bottom portion, a second bottom portion adjacent to the first bottom portion in the first direction, a third bottom portion, and a fourth bottom portion adjacent to the third bottom portion in the first direction. The top portions include a first top portion provided between the first bottom portion and the second bottom portion, and a second top portion provided between the third bottom portion and the fourth bottom portion.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: October 22, 2019
    Assignee: Toshiba Memory Corporation
    Inventors: Yasuaki Ootera, Tsuyoshi Kondo, Nobuyuki Umetsu, Michael Arnaud Quinsat, Takuya Shimada, Masaki Kado, Susumu Hashimoto, Shiho Nakamura
  • Patent number: 10439057
    Abstract: A multi-gate high electron mobility transistor (HEMT) and its methods of formation are disclosed. The multi-gate HEMT includes a substrate and an adhesion layer on top of the substrate. A channel layer is disposed on top of the adhesion layer, and a first gate electrode is disposed on top of the channel layer. The first gate electrode has a first gate dielectric layer in between the first gate electrode and the channel layer. A second gate electrode is embedded within the substrate and beneath the channel layer. The second gate electrode has a second gate dielectric layer completely surrounding the second gate electrode. A pair of source and drain contacts are disposed on opposite sides of the first gate electrode.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: October 8, 2019
    Assignee: Intel Corporation
    Inventors: Kimin Jun, Sansaptak Dasgupta, Alejandro X. Levander, Patrick Morrow
  • Patent number: 10388681
    Abstract: The present disclosure relates to a solid-state image pickup apparatus and an electronic apparatus capable of preventing charges accumulated in a PD from being lost and suppressing reductions of an S/N and a dynamic range. The apparatus according to an embodiment of the present disclosure includes: a photoelectric conversion unit; a first holding unit that holds the charge transferred from the photoelectric conversion unit; a first transfer gate unit that controls the transfer of the charge; a charge drain unit that is a drain destination of the charge generated by the photoelectric conversion unit; a first drain gate unit that controls the transfer of the charge from the photoelectric conversion unit to the charge drain unit; and a second drain gate unit that connects the charge drain unit with a constant voltage source. The present disclosure can be applied to a CIS and an electronic apparatus provided with the CIS.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 20, 2019
    Assignee: Sony Semiconductor Solutions Corporation
    Inventor: Hiroyuki Ohri
  • Patent number: 10384931
    Abstract: An electronic device includes a substrate, a functional element that is arranged on the substrate, a terminal that is arranged on the substrate and that is electrically connected to the functional element, and a bonding wire that is connected to the terminal. The terminal has an alloy portion that is alloyed to the bonding wire at a connection portion between the terminal and the bonding wire, and the thickness of the terminal is larger than the thickness of the alloy portion. Moreover, the terminal is formed of the same material (silicon) as the functional element.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: August 20, 2019
    Assignee: Seiko Epson Corporation
    Inventor: Teruo Takizawa
  • Patent number: 10371658
    Abstract: A gas sensor includes a p-type semiconductor layer that contains copper or silver cations and contacts with detection target gas, a first electrode that is a Schottky electrode to the p-type semiconductor layer, a high-resistance layer that is provided between the p-type semiconductor layer and the first electrode such that the p-type semiconductor layer and the first electrode partly contact with each other and has resistance higher than that of each of the p-type semiconductor layer and the first electrode, and a second electrode that is an ohmic electrode to the p-type semiconductor layer.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: August 6, 2019
    Assignee: FUJITSU LIMITED
    Inventors: Satoru Momose, Osamu Tsuboi, Kazuaki Karasawa
  • Patent number: 10374145
    Abstract: A method for forming a memory device that includes providing a free layer of an alloy of cobalt (Co), iron (Fe) and boron (B) overlying a reference layer; and forming metal layer comprising a boron (B) sink composition atop the free layer. Boron (B) may be diffused from the free layer to the metal layer comprising the boron sink composition. At least a portion of the metal layer including the boron (B) sink composition is removed. A metal oxide is formed atop the free layer. The free layer may be a crystalline cobalt and iron alloy. An interface between the metal oxide and free layer can provide perpendicular magnetic anisotropy character.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: August 6, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen L. Brown, Guohan Hu, Jonathan Z. Sun, Daniel C. Worledge
  • Patent number: 10340389
    Abstract: The present disclosure discloses in embodiments a thin film transistor and a manufacturing method thereof, an array substrate. The thin film transistor comprises: a base substrate, an active layer, a source, a gate, and a drain. Two ends of the active layer are connected to the source and the drain, respectively. The gate comprises a top gate and a bottom gate arranged opposite to each other in a direction perpendicular to the base substrate, the top gate comprising a top gate top portion and a top gate side portion connected to the top gate top portion, the top gate side portion extending from the top gate top portion towards the base substrate. The active layer is sandwiched between the top gate top portion and the bottom gate. A sidewall of the active layer is at least partially surrounded by the top gate side portion.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: July 2, 2019
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Xiangyong Kong, Xiaming Zhu, Xiaodi Liu
  • Patent number: 10340383
    Abstract: A semiconductor device includes a fin extending along a first direction over a substrate, and a gate structure extending in a second direction overlying the fin. The gate structure includes a gate dielectric layer overlying the fin, a gate electrode overlying the gate dielectric layer, and insulating gate sidewalls on opposing lateral surfaces of the gate electrode extending along the second direction. A source/drain region is formed in the fin in a region adjacent the gate electrode structure, and a stressor layer is between the source/drain region and the semiconductor substrate. The stressor layer includes GeSn or SiGeSn containing 1019 atoms cm?3 or less of a dopant, and a portion of the fin under the gate structure is a channel region.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: July 2, 2019
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL TAIWAN UNIVERSITY
    Inventors: Huang-Siang Lan, CheeWee Liu, Chi-Wen Liu, Shih-Hsien Huang, I-Hsieh Wong, Hung-Yu Yeh, Chung-En Tsai
  • Patent number: 10325935
    Abstract: This disclosure discloses a display panel, a production method thereof, and a display apparatus. This method comprises: forming a pattern of a first metal layer on a base substrate and a pattern of a metal oxide conductive layer being electrically connected to the first metal layer by at least one through hole at a side of the first metal layer away from the base substrate; forming a reductive metal compound layer on a surface of the first metal layer at a side away from the base substrate before forming the pattern of the metal oxide conductive layer; treating the reductive metal compound layer and the metal oxide conductive layer after forming the pattern of the metal oxide conductive layer so that the reductive metal compound layer is oxidized into a second metal layer and metal particles are produced at the surface of the metal oxide conductive layer.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: June 18, 2019
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Dezhi Xu, Kui Gong
  • Patent number: 10304953
    Abstract: A semiconductor device includes stripe-shaped trench gate structures that extend in a semiconductor body along a first horizontal direction. Transistor mesas between neighboring trench gate structures include body regions and source zones, wherein the body regions form first pn junctions with a drift structure and second pn junctions with the source zones. The source zones directly adjoin two neighboring trench gate structures, respectively. Diode mesas that include at least portions of diode regions form third pn junctions with the drift structure. The diode mesas directly adjoin two neighboring trench gate structures, respectively. The transistor mesas and the diode mesas alternate at least along the first horizontal direction.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 28, 2019
    Assignee: Infineon Technologies AG
    Inventors: Thomas Aichinger, Dethard Peters, Ralf Siemieniec
  • Patent number: 10290729
    Abstract: In an equal width active cell IE type IGBT, a wide active cell IE type IGBT, and the like, an active cell region is equal in trench width to an inactive cell region, or the trench width of the inactive cell region is narrower. Accordingly, it is relatively easy to ensure the breakdown voltage. However, with such a structure, an attempt to enhance the IE effect entails problems such as further complication of the structure. The present invention provides a narrow active cell IE type IGBT having an active cell two-dimensional thinned-out structure, and not having a substrate trench for contact.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: May 14, 2019
    Assignee: Renesas Electronics Corporation
    Inventor: Hitoshi Matsuura