Patents Examined by Mayla Gonzalez Ramos
  • Patent number: 11282969
    Abstract: A back contact solar cell assembly and methods for its manufacture and assembly onto a panel for use in space vehicles are described. The solar cell assembly includes a compound semiconductor multijunction solar cell having a contact at the top surface of the solar cell, a conductive semiconductor element extending from the contact on the top surface to the back surface of the assembly where it forms a first back contact of a first polarity type, and a second back contact of a second polarity at the back surface of the assembly electrically coupled to the back surface of the solar cell.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: March 22, 2022
    Assignee: SolAero Technologies Corp.
    Inventors: Lei Yang, Daniel McGlynn
  • Patent number: 11280754
    Abstract: The present disclosure relates to a measuring probe for electrochemical measurements, including a probe housing having a first cavity to hold a first electrolyte, a first electrode disposed in the first cavity and contacting the first electrolyte, a first junction disposed in a wall of the probe housing, the junction at least temporarily connecting the first cavity with an environment of the measuring probe, a second cavity formed in the probe housing to hold a second electrolyte, a second electrode disposed in the second cavity and contacting the second electrolyte, and a second junction having reversible open and closed states, in which in the closed state the second junction separates the first cavity and the second cavity and in the open state connects the second cavity to the first cavity, thereby enabling a current flow between the first electrolyte and the second electrolyte, mediated via ions as charge carriers therebetween.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: March 22, 2022
    Assignee: ENDRESS+HAUSER CONDUCTA GMBH+CO. KG
    Inventors: Thomas Wilhelm, Torsten Pechstein
  • Patent number: 11283033
    Abstract: The present specification relates to a composition for an organic material layer of an organic solar cell including an electron donor including a polymer including a first unit represented by Chemical Formula 1, a second unit represented by Chemical Formula 2, and a third unit represented by Chemical Formula 3 or 4; and a non-fullerene-based electron acceptor, and an organic solar cell including the composition.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: March 22, 2022
    Inventors: Jiyoung Lee, Doowhan Choi, Bogyu Lim, Ji Hoon Kim
  • Patent number: 11249045
    Abstract: A gas sensor, and a method for measuring the concentrations of a plurality of target components in a gas to be measured are disclosed. The gas sensor is provided with: a specific component measurement means which measures the concentration of a specific component in a measurement chamber; a preliminary oxygen concentration control means which controls the oxygen concentration in a preliminary adjustment chamber; a drive control means which controls the driving and stopping of the preliminary oxygen concentration control means; and a target component acquisition means which, on the basis of the difference between sensor outputs from the specific component measurement means when the preliminary oxygen concentration control means is being driven and when the preliminary oxygen concentration control means is stopped, and one of the respective sensor outputs, acquires the concentrations of a first target component and a second target component.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: February 15, 2022
    Assignee: NGK INSULATORS, LTD.
    Inventor: Kunihiko Nakagaki
  • Patent number: 11233165
    Abstract: Provided is a multi-junction solar cell in which two or more absorption layers having different bandgaps are stacked on one another. The multi-junction solar cell includes a first cell including a first absorption layer, and a second cell electrically connected in series onto the first cell, wherein the second cell includes a second absorption layer having a higher bandgap compared to the first absorption layer, and a plurality of recesses penetrating through the second absorption layer.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: January 25, 2022
    Assignee: Korea Institute of Science and Technology
    Inventors: Jeung Hyun Jeong, In Ho Kim, Won Mok Kim, Jong Keuk Park, Hyeong Geun Yu
  • Patent number: 11233162
    Abstract: The present disclosure is directed to a method of processing a solar cell device. The method comprises detecting at least one inconsistency at a surface of a semiconductor substrate having a solar cell active region formed therein. A deposition pattern is determined based on the location of the at least one inconsistency. A material is selectively deposited on the substrate according to the deposition pattern.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: January 25, 2022
    Assignee: The Boeing Company
    Inventor: Eric Rehder
  • Patent number: 11227961
    Abstract: There is provided a photoelectric conversion device which can prevent the contact resistance between a non-crystalline semiconductor layer containing impurities and an electrode formed on the non-crystalline silicon layer from increasing, and can improve the element characteristics. A photoelectric conversion element (10) includes a silicon substrate (12), a first non-crystalline semiconductor layer (20n), a second non-crystalline semiconductor layer (20p), a first electrode (22n), and a second electrode (22p). One electrode (22n) includes first conductive layers (26n, 26p), and second conductive layers (28n, 28p). The first conductive layers (26n, 26p) have a first metal as a main component. The second conductive layers (28n, 28p) contain a second metal which is more likely to be oxidized than the first metal, are formed to be in contact with the first conductive layers (26n, 26p), and are disposed to be closer to the silicon substrate (12) than the first conductive layers (26n, 26p).
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: January 18, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kenji Kimoto, Naoki Koide, Liumin Zou, Masamichi Kobayashi
  • Patent number: 11217711
    Abstract: A photovoltaic device includes: a p-type diffusion layer (11) and a n-type diffusion layer (12) on a back face of a semiconductor substrate (1); electrodes (4 to 6); and a wiring board (8). The electrodes (4, 6) are disposed on the p-type diffusion layer (11), and the electrodes (5) are disposed on the n-type diffusion layer (12). The wiring board (8) has wires (82) connected to the electrodes (4, 6) by conductive adhesive layers (7) and wires (83) connected to the electrodes (5) by the conductive adhesive layers (7). The electrodes (6) are disposed, on both ends of the n-type diffusion layer (12) with respect to the x-axis direction, between an end region of the n-type diffusion layer (12) and an edge of the semiconductor substrate (1).
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: January 4, 2022
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Makoto Higashikawa, Yixiao Song
  • Patent number: 11211511
    Abstract: A method of manufacturing a multijunction solar cell having an upper first solar subcell composed of a semiconductor material having a first band gap; a second solar subcell adjacent to said first solar subcell and composed of a semiconductor material having a second band gap smaller than the first band gap and being lattice matched with the upper first solar subcell; a third solar subcell adjacent to said second solar subcell and composed of a semiconductor material having a third band gap smaller than the second band gap and being lattice matched with the second solar subcell; a graded interlayer adjacent to the third solar subcell; and a fourth solar subcell adjacent to said graded interlayer and composed of a semiconductor material having a fourth band gap smaller than the third band gap and being lattice mismatched with respect to the third solar subcell; wherein the fourth subcell has a direct bandgap of greater than 0.75 eV.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: December 28, 2021
    Assignee: SolAero Technoogies Corp.
    Inventor: Daniel Derkacs
  • Patent number: 11211504
    Abstract: A solar cell is disclosed. The solar cell includes a first conductive region positioned at a front surface of a semiconductor substrate and containing impurities of a first conductivity type or a second conductivity type, a second conductive region positioned at a back surface of the semiconductor substrate and containing impurities of a conductivity type opposite a conductivity type of impurities of the first conductive region, a first electrode positioned on the front surface of the semiconductor substrate and connected to the first conductive region, and a second electrode positioned on the back surface of the semiconductor substrate and connected to the second conductive region. Each of the first and second electrodes includes metal particles and a glass frit.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: December 28, 2021
    Assignee: LG ELECTRONICS INC.
    Inventors: Haejong Cho, Donghae Oh, Juhwa Cheong, Junyong Ahn
  • Patent number: 11205811
    Abstract: A cooling structure for a battery is provided. The cooling structure includes a plurality of stacked battery cells and tabs are formed on one side or both sides of electrode of each of the battery cells. Additionally, a cooling passage is configured to accommodate the tabs in an inner space thereof and the tabs operate as cooling fins in the cooling passage.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: December 21, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Jun-Seok Choi, Byung-Su Kim
  • Patent number: 11177406
    Abstract: A solar cell and a solar cell module are disclosed. The solar cell module includes a plurality of solar cells each including a semiconductor substrate and first and second electrodes on the semiconductor substrate, the first and second electrodes being alternately positioned in a first direction and extended in a second direction intersecting the first direction, a first conductive line extended in the first direction to intersect the first and second electrodes, connected to the first electrode by a first conductive layer, and insulated from the second electrode by an insulating layer, and a second conductive line positioned in parallel with the first conductive line, connected to the second electrode by the first conductive layer, and insulated from the first electrode by the insulating layer.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: November 16, 2021
    Assignee: LG ELECTRONICS INC.
    Inventor: Chunghyun Lim
  • Patent number: 11171384
    Abstract: The disclosed secondary battery is capable of preventing a short-circuit pressure at which the safety vent is ruptured from being reduced due to deformation of the safety vent during assembly of the battery. The secondary battery of the present invention includes a can member accommodating an electrode assembly and a top cap assembly covering an opening of the can member. A safety vent is provided in the top cap assembly to discharge a gas when an inner pressure of the can member increases, wherein the safety vent includes a main body and a bending unit, in which an outer edge of the main body is bent, and wherein a buffering space is defined between the bending unit and the main body.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: November 9, 2021
    Inventors: Geon Woo Min, Hang Soo Shin, Do Gyun Kim, Sang Suk Jung, Chan Bae Kim
  • Patent number: 11165056
    Abstract: The present invention relates to a method for producing an electrode material for a battery electrode, in particular for a lithium-ion battery, wherein said electrode material comprises nanostructured silicon carbide, comprising the steps of: a) providing a mixture including a silicon source, a carbon source and a dopant, wherein at least the silicon source and the carbon source are present in common in particles of a solid granulate; b) treating the mixture provided in step a) at a temperature in the range from ?1400° C. to ?2000° C., in particular in a range from ?1650° C. to ?1850° C., wherein step b) is carried out in a reactor that has a depositing surface the temperature of which relative to at least one other inner reactor surface is reduced. In summary, a method described above enables to combine a simple and cost-efficient production with a high cycle stability.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: November 2, 2021
    Assignee: UNIVERSITÄT PADERBORN
    Inventor: Siegmund Greulich-Weber
  • Patent number: 11164984
    Abstract: An interconnecting member of a solar cell panel for connecting a plurality of solar cells, can include a core layer and a solder layer formed on a surface of the core layer, in which the core layer includes a protruding portion having a peak portion extending along a longitudinal direction of the core layer, and a reflection surface having an inclined surface or a rounded portion disposed at opposite sides of the peak portion, and a width of the protruding portion increases from the peak portion towards a center of the core layer.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: November 2, 2021
    Assignee: LG ELECTRONICS INC.
    Inventors: Woojoong Kang, Dongju Kang, Jangho Kim, Juseok Kim, Hyunjin Kim, Kwangkyu Song, Yihwan Jung, Yunhui Cho, Minseok Choi, Hyeonbum Jin
  • Patent number: 11150212
    Abstract: The present disclosure relates to a sensor including an elongated member including at least a portion that is electrically conductive. The elongated member includes a sensing layer adapted to react with a material desired to be sensed. An insulating layer surrounds the elongated member. The insulating layer defines at least one access opening for allowing the material desired to be sensed to enter an interior region defined between the elongated member and the insulating layer. The insulating layer has an inner transverse cross-sectional profile that is different from an outer transverse cross-sectional profile of the elongated member. The difference in transverse cross-sectional profiles between the elongated member and the insulating layer provides channels at the interior region defined between the insulating layer and the elongated member. The channels extend generally along the length of the elongated member and are sized to allow the material desired to be sensed to move along the length of the sensor.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: October 19, 2021
    Assignee: PEPEX BIOMEDICAL, INC.
    Inventor: James L. Say
  • Patent number: 11131717
    Abstract: Described methods and systems provide in-situ leakage current testing of battery cells in battery packs even while these packs operate. Specifically, an external electrical current is discontinued through a tested battery cell using a node controller, to which the tested battery cell is independently connected. Changes in the open circuit voltage (OCV) are then detected by the node controller for a set period time. Any voltage change, associated with taking the tested cell offline, is compensated by one or more other cells in the battery pack. The overall pack current and voltage remains substantially unchanged (based on the application demands), while the in-situ leakage current testing is initiated, performed, and/or completed. The OCV changes are then used to determine the leakage current of the tested cell and, in some examples, to determine the state of health of this cell and/or adjust the operating parameters of this cell.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: September 28, 2021
    Assignee: Element Energy, Inc.
    Inventors: Rainer Johannes Fasching, Georgy Zerkalov, Arnaud Devie, Seth Marshall Kahn, Anthony John Stratakos, Corrado Cammi, Anderson Rennie John, Yoosok Saw
  • Patent number: 11133429
    Abstract: Device structures, apparatuses, and methods are disclosed for photovoltaic cells that may be a single-junction or multijunction solar cells, with at least a first layer comprising a group-IV semiconductor in which part of the cell comprises a second layer comprising a III-V semiconductor or group-IV semiconductor having a different composition than the group-IV semiconductor of the first layer, such that a heterostructure is formed between the first and second layers.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: September 28, 2021
    Assignee: The Boeing Company
    Inventors: Richard R. King, Christopher M. Fetzer, Nasser H. Karam
  • Patent number: 11128016
    Abstract: This disclosure relates to a battery assembly for an electrified vehicle and a corresponding method. An exemplary battery assembly includes a battery cell including a terminal, a busbar, and at least one first weld bead securing the busbar to the terminal. The at least one first weld bead is substantially Z-shaped.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: September 21, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Yongcai Wang, Yunan Guo, Guangyao Li, Ahteram Khan
  • Patent number: 11121270
    Abstract: There is provided a photoelectric conversion element which can prevent the contact resistance between a non-crystalline semiconductor layer containing impurities and an electrode formed on the non-crystalline semiconductor layer from increasing, and can improve the element characteristics. A photoelectric conversion element (10) includes a semiconductor substrate (12), a first semiconductor layer (20n), a second semiconductor layer (20p), a first electrode (22n), and a second electrode (22p). The first semiconductor layer (20n) has a first conductive type. The second semiconductor layer (20p) has a second conductive type opposite to the first conductive type. The first electrode (22n) is formed on the first semiconductor layer (20n). The second electrode (22p) is formed on the second semiconductor layer (20p). At least one electrode of the first electrode (22n) and the second electrode (22p) includes a plurality of metal crystal grains.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: September 14, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kenji Kimoto, Naoki Koide, Takeshi Hieda, Junichi Nakamura