Patents Examined by Mayla Gonzalez Ramos
  • Patent number: 11114633
    Abstract: A method for constructing a solar rectenna array by growing carbon nanotube antennas between lines of metal, and subsequently applying a bias voltage on the carbon nanotube antennas to convert the diodes on the tips of the carbon nanotube antennas from metal oxide carbon diodes to geometric diodes. Techniques for preserving the converted diodes by adding additional oxide are also described.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: September 7, 2021
    Assignee: NOVASOLIX, INC.
    Inventors: Jyotsna Iyer, Laurence H. Cooke
  • Patent number: 11108075
    Abstract: Various arrangements of pressurized battery modules are detailed herein. Such a pressurized battery module may include a sealed battery module housing. The pressurized battery module may include multiple pouch cells. Each pouch cell may be located within the sealed battery module housing. The pressurized battery module may further include an insulative oil that is pressurized within the sealed housing. This insulative oil may exert pressure on an external surface of each pouch cell within the pressurized battery module.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: August 31, 2021
    Assignee: TeraWatt Technology Inc.
    Inventors: Ken Ogata, Yang Yang, Hajime Hoshi, Ying Liu
  • Patent number: 11105770
    Abstract: A method of forming a nanopore that includes forming a pore geometry hard mask on a semiconductor substrate; and oxidizing the semiconductor substrate to form an oxide layer on exposed surfaces of the semiconductor substrate. An apex portion of the oxide layer extends beneath an edge of the pore geometry hard mask. The pore geometry hard mask is removed, and the semiconductor substrate is etched with an etch that is selective to the oxide layer to provide the nanopore. The opening of the nanopore has a diameter defined by the apex portion of the oxide layer.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: August 31, 2021
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng
  • Patent number: 11101514
    Abstract: A battery assembly includes a battery that has a top surface surrounded by a circumferential edge; and a removable tab attached to the top surface. The removable tab includes a first tab end and an oppositely disposed second tab end; a gripping region disposed adjacent to the first tab end; and a battery cell attachment region disposed adjacent to the second tab end and attached to the top surface of the battery. The battery cell attachment region has first and second oppositely disposed sidewalls, wherein at least one of the first and second sidewalls is curved inwardly away from the circumferential edge of the battery such that a portion of the top surface of the battery is exposed between the sidewall and the circumferential edge of the battery.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: August 24, 2021
    Assignee: DURACELL U.S. OPERATIONS, INC.
    Inventors: Jean Mary Methe, David Goldfarb, David N. Klein
  • Patent number: 11101421
    Abstract: Embodiments relate to an apparatus for a nano-scale energy converter and an electric power generator. The apparatus includes two electrodes separated by a distance. The first electrode is manufactured to have a first work function value and the second electrode is manufactured to have a second work function value, with the first and second work function values being different. A cavity is formed by the distance between the first and second electrodes, and a nanofluid is disposed in the cavity. The nanofluid includes nanoparticles suspended in a dielectric medium. The nanoparticles have a third work function value that is greater than the first and second work function values. The relationship of the work function values of the nanoparticles to the work function values of the electrodes optimizes the transfer of electrons to the nanoparticles through Brownian motion and electron hopping.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: August 24, 2021
    Assignee: Birmingham Technologies, Inc.
    Inventor: Joseph Birmingham
  • Patent number: 11094948
    Abstract: The invention relates to a system (10) for storing natural gas as fuel, in particular for a motor vehicle or utility vehicle, wherein the system (10) has at least one storage tank (11) for the fuel. It is provided according to the invention that the storage tank (11) is assigned at least one fuel cell (12), wherein natural gas that has changed into the gaseous state can be fed from the storage tank (11) to the fuel cell (12) in order to be at least partially converted into electrical energy, wherein the storage tank (11) and the fuel cell (12) interact by way of a control unit (13). In this case, the fuel cell (12) is in the form of a solid oxide fuel cell.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: August 17, 2021
    Assignee: Robert Bosch GmbH
    Inventor: Achim Wach
  • Patent number: 11075590
    Abstract: In various embodiments, a method includes (1) applying a first voltage and a first current to an electroactive device that includes a nanovoided electroactive polymer, (2) measuring a second voltage and a second current associated with the electroactive device, (3) determining at least one of a position or a force output associated with the electroactive device, the position or the force based on the second voltage and the second current, and (4) applying a third voltage and a third current to the electroactive device based on the at least one of the position or the force output. Various other methods, systems, apparatuses, and materials are also disclosed.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: July 27, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Jack Lindsay, Katherine Marie Smyth, Thomas John Farrell Wallin, Andrew John Ouderkirk, Tanya Malhotra, Austin Lane, Christopher Yuan Ting Liao, Yigit Menguc
  • Patent number: 11075312
    Abstract: A solar cell module includes solar cells having main surfaces to which inter-cell wiring members are connected, and an insulating member disposed on the main surfaces and the wiring members, and a first lead-out wire provided to the insulating member. The insulating member includes a first insulating layer formed of polyester resin, a second insulating layer formed of polyolefin or EVA and provided between the first insulating layer and the lead-out wires, and a third insulating layer formed of polyolefin or EVA and provided between the first insulating layer and the main surfaces. The third insulating layer has a thickness in a direction perpendicular to the main surfaces larger than a thickness of the second insulating layer.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: July 27, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Youhei Murakami, Haruhisa Hashimoto, Tasuku Ishiguro, Masahiro Iwata, Hiroyuki Kannou, Ryoji Naito, Kazuki Ohta
  • Patent number: 11067313
    Abstract: A floating platform for solar panels is provided. The floating platform may include a plurality of plates. Each of the plurality of plates may have a ballast chamber filled with a ballast material. Each of the plurality of plates may further have a float chamber disposed over the ballast chamber. Each of the plurality of plates may further have a channel passing through the ballast chamber and the float chamber. The channel may further have one or more openings to pass water into the ballast chamber and an opening to pass air from the channel. Each of the plurality of plates may further have a locking member. Each of the plurality of plates may further have one or more connection sections for placing one or more strap assemblies. The strap assemblies may be provided for disposing one or more solar panels on the plurality of plates.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: July 20, 2021
    Assignee: SolarStrap Technologies, LLC
    Inventor: Jonathan Port
  • Patent number: 11063166
    Abstract: A solar device includes a first string of first solar wafers, wherein a plurality of the first solar wafers each overlap with at least one vertically adjacent solar wafer from the first string. Additionally, the solar device includes a second string of second solar wafers, wherein a plurality of the second solar wafers each overlap with at least one vertically adjacent solar wafer from the second string, wherein a plurality of the first solar wafers overlap with one or more of the plurality of second solar wafers to electrically connect horizontally adjacent solar wafers in parallel.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: July 13, 2021
    Assignee: SUNPOWER CORPORATION
    Inventor: Nathaniel Caswell
  • Patent number: 11061015
    Abstract: A method of determining the result of an assay in a microfluidic device includes the steps of: dispensing a sample droplet onto a first portion of an electrode array of the microfluidic device; dispensing a reagent droplet onto a second portion of the electrode array of the microfluidic device; controlling actuation voltages applied to the electrode array to mix the sample droplet and the reagent droplet into a product droplet; sensing a dynamic property of the product droplet; and determining an assay of the sample droplet based on the sensed dynamic property. The dynamic property is a physical property of the product droplet that influences a transport property of the product droplet on the electrode array. Example dynamic properties of the product droplet include the moveable state, split-able state, and viscosity based on droplet properties. The method may be used to perform an amoebocyte lysate (LAL) assay.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: July 13, 2021
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Benjamin James Hadwen, Adrian Marc Simon Jacobs, Jason Roderick Hector, Michael James Brownlow, Masahiro Adachi, Alison Mary Skinner, Mark Childs
  • Patent number: 11056723
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte. The negative electrode includes an opposing region that opposes the positive electrode with the separator disposed therebetween and a non-opposing region that does not oppose the positive electrode but opposes the separator. In the case that the discharge cut-off voltage of the nonaqueous electrolyte secondary battery is in the range of 2.5 V to 3.0 V, a part of the non-opposing region adjacent to a boundary between the opposing region and the non-opposing region has an electric potential plateau in the range of ?0.02 V to +0.02 V relative to a negative electrode potential in the opposing region.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: July 6, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takayuki Shirane, Takanobu Chiga
  • Patent number: 11047599
    Abstract: A solar array is mounted on a surface of a structure, the surface being generally planar. The solar array comprises a solar module and a support that supports the solar module a distance above the surface. The support defines a channel to receive the solar module. A locking mechanism engages the support to secure the solar module to the support, wherein the solar module extends between the support and the locking mechanism and into the channel such that the solar module is allowed to move relative to the support in a first plane generally parallel to the surface when the solar module is secured to the support. The locking mechanism and the support inhibit movement of the solar module in a second plane generally perpendicular to the surface when the solar module is secured to the support.
    Type: Grant
    Filed: March 25, 2017
    Date of Patent: June 29, 2021
    Inventor: Samuel Marcus-Flack Truthseeker
  • Patent number: 11031516
    Abstract: There is provided a photoelectric conversion element which can prevent the contact resistance between a non-crystalline semiconductor layer containing impurities and an electrode formed on the non-crystalline semiconductor layer from increasing, and can improve the element characteristics. A photoelectric conversion element (10) includes a semiconductor substrate (12), a first semiconductor layer (20n), a second semiconductor layer (20p), a first electrode (22n), and a second electrode (22p). The first semiconductor layer has a first conductive type. The second semiconductor layer has a second conductive type. The first electrode is formed on the first semiconductor layer. The second electrode is formed on the second semiconductor layer. The first electrode includes a first transparent conductive layer (26n) formed on the first semiconductor layer, and a first metal layer (28n) formed on the first transparent conductive layer.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: June 8, 2021
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kenji Kimoto, Naoki Koide, Yuta Matsumoto, Junichi Nakamura
  • Patent number: 11024751
    Abstract: A photoelectric conversion element includes a semiconductor substrate which has a substrate outer edge including a circular arc, and a first terminal, a second terminal, a third terminal, and a fourth terminal disposed in this order along a circumferential direction of the circular arc on one surface side of the semiconductor substrate, and in which each of a distance from the substrate outer edge to the second terminal and a distance from the substrate outer edge to the fourth terminal is greater than both a distance from the substrate outer edge to the first terminal and a distance from the substrate outer edge to the third terminal.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: June 1, 2021
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Hiromu Kawai
  • Patent number: 11012027
    Abstract: A system for converting solar energy to electric power and a glass for a layer of solar cells in the system. A solar panel installation comprises a solar panel with at least one solar cell formed with a stack of plural layers of photovoltaic wafer material. Each layer of wafer material has an edge direction from a recipient edge to a back edge, and the solar cell is retained within the solar panel installation with the photovoltaic wafer material disposed with the edge direction aligned with incident solar direction. Reflective material applied to facing surfaces of the photovoltaic wafer material facilitates internal reflection of photons. A glass layer has plural sheets of Graphene layered to form a Graphene Cube constructed to exhibit Multiple Excitation Generation (MEG). A method for assembling the glass fixes a top glass above a bottom glass with photovoltaic wafer material establishing a fixed distance therebetween.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 18, 2021
    Assignee: Nex-Gen Solar Technologies, LLC
    Inventor: Mathew M. Zuckerman
  • Patent number: 11011661
    Abstract: Improved high work function back contacts for solar cells are provided. In one aspect, a method of forming a solar cell includes: forming a completed solar cell having a substrate coated with an electrically conductive material, an absorber disposed on the electrically conductive material, a buffer layer disposed on the absorber, a transparent front contact disposed on the buffer layer, and a metal grid disposed on the transparent front contact; removing the substrate and the electrically conductive material using exfoliation, exposing a backside surface of the solar cell; depositing a high work function material onto the back side surface of the solar cell; and depositing a back contact onto the high work function material. A solar cell formed by the present techniques is also provided. Yield of the exfoliated device can be improved by removing bubbles from adhesive used for exfoliation and/or forming contact pads to access the metal grid.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: May 18, 2021
    Assignee: International Business Machines Corporation
    Inventors: Priscilla D. Antunez, Douglas M. Bishop, Gloria W. Fraczak, Oki Gunawan, Richard A. Haight
  • Patent number: 11001504
    Abstract: Disclosed is a compound semiconductor material with excellent performance and its utilization. The compound semiconductor may be expressed by Chemical Formula 1 below: M1aCo4Sb12-xM2x??Chemical Formula 1 where M1 and M2 are respectively at least one selected from In and a rare earth metal element, 0?a?1.8, and 0?x?0.6.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: May 11, 2021
    Assignee: LG CHEM, LTD.
    Inventors: Jae-Ki Lee, Tae-Hoon Kim, Cheol-Hee Park
  • Patent number: 10991517
    Abstract: Transmission of low energy light is one of the primary loss mechanisms of a single junction solar cell. Molecular photon upconversion via triplet-triplet annihilation (TTA-UC)—combining two or more low energy photons to generate a higher energy excited state—is an intriguing strategy to surpass this limit. The present disclosure is directed to self-assembled multilayers, e.g., bi- or trilayers, on metal oxide surfaces as a strategy to facilitate TTA-UC emission and demonstrate direct charge separation of the upconverted state. A three-fold enhancement in transient photocurrent is achieved at light intensities as low as two equivalent suns.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: April 27, 2021
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Kenneth Hanson, Sean Hill, Tristan Dilbeck
  • Patent number: 10973129
    Abstract: A method is disclosed for applying an electrical conductor to a solar cell, which comprises providing a flexible membrane with a pattern of groove formed on a first surface thereof, and loading the grooves with a composition comprising conductive particles. The composition is, or may be made, electrically conductive. Once the membrane is loaded, the grooved first surface of the membrane is brought into contact with a front or/and back of a solar cell. A pressure is then applied between the solar cell and the membrane(s) so that the composition loaded to the grooves adheres to the solar cell. The membrane(s) and the solar cell are separated and the composition in the groove is left on the solar cell surface. The electrically conductive particles in the composition are then sintered or otherwise fused to form a pattern of electrical conductor on the solar cell, the pattern corresponding to the pattern formed in the membrane(s).
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: April 6, 2021
    Assignee: Lumet Technologies Ltd.
    Inventors: Benzion Landa, Naomi Elfassy, Stanislav Thygelbaum