Patents Examined by Michael G Miller
  • Patent number: 11821070
    Abstract: Methods of depositing metal films comprising exposing a substrate surface to a first metal precursor followed by a non-oxygen containing reducing agent comprising a second metal to form a zero-valent first metal film are described. The reducing agent has a metal center that is more electropositive than the metal center of the first metal precursor. In some embodiments, methods of depositing ruthenium films are described in which a substrate surface is exposed to a ruthenium precursor to form a ruthenium containing film on the substrate surface followed by exposure to a non-oxygen containing reducing agent to reduce the ruthenium containing film to a zero-valent ruthenium film and generate an oxidized form of the reducing agent.
    Type: Grant
    Filed: November 11, 2020
    Date of Patent: November 21, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nasrin Kazem, Muthukumar Kaliappan, Jeffrey W. Anthis, Michael Haverty
  • Patent number: 11820700
    Abstract: A method of depositing a coating utilizing a coating apparatus includes providing a coating apparatus above a glass substrate and forming a coating on a surface of the glass substrate while flowing a fluorine-containing compound into the coating apparatus. The fluorine-containing compound inhibits the formation of the coating on one or more portions of the coating apparatus.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: November 21, 2023
    Assignee: Pilkington Group Limited
    Inventors: Michael Martin Radtke, Steven Edward Phillips
  • Patent number: 11820716
    Abstract: A method of fabricating cooling features on a CMC component may comprise compressing a fabric preform within tooling including holes and/or recesses facing the fabric preform. During the compression, portions of the fabric preform are pushed into the holes and/or recesses. Gases are delivered through the tooling to deposit a matrix material on exposed surfaces of the fabric preform while the fabric preform is being compressed. The matrix material builds up on the portions of the fabric preform pushed into the holes and/or recesses, and a rigidized preform with surface protrusions is formed. The tooling is removed, and the rigidized preform is densified, thereby forming a CMC component including raised surface features.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: November 21, 2023
    Assignees: ROLLS ROYCE NORTH AMERICAN TECHNOLOGIES INC., ROLLS-ROYCE HIGH TEMPERATURE COMPOSITES INC., ROLLS-ROYCE CORPORATION
    Inventors: Ted Freeman, Aaron Sippel, Robert Shinavski, Chris Barrett
  • Patent number: 11822152
    Abstract: The invention relates to a method for manufacturing an ophthalmic lens having at least one optical function, comprising the step (200) of providing a starting optical system of the lens, having a basic optical function and the step (500) of additively manufacturing an additional optical element of the lens, by deposition of multiple predetermined bulking components made of at least one material having a predetermined refractive index, directly onto the front surface and/or the rear surface of the starting optical system; wherein the additive manufacturing step comprises the step of determining a manufacturing guideline for the additional optical element on the basis of the characteristics of said at least one optical function to be provided to the lens, the characteristics of said at least one basic optical function, the geometric characteristics of the starting optical system, and the predetermined refractive index of the material.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: November 21, 2023
    Assignee: Essilor International
    Inventors: Loïc Quere, Alexandre Gouraud, Pascal Allione, Cédric Begon
  • Patent number: 11823976
    Abstract: An atomic layer deposition (ALD) process for depositing a fluorine-containing thin film on a substrate can include a plurality of super-cycles. Each super-cycle may include a metal fluoride sub-cycle and a reducing sub-cycle. The metal fluoride sub-cycle may include contacting the substrate with a metal fluoride. The reducing sub-cycle may include alternately and sequentially contacting the substrate with a reducing agent and a nitrogen reactant.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: November 21, 2023
    Assignee: ASM IP Holding, B.V.
    Inventors: Tom E. Blomberg, Linda Lindroos, Hannu Huotari
  • Patent number: 11819838
    Abstract: The present invention provides a supply system enabling a precursor of a solid material or a precursor of a liquid material to be supplied to a latter process at no higher concentration than required and also at or above a predetermined concentration. A supply system 1 comprises: a vessel 11 for receiving a precursor material; a vessel heating unit for heating the vessel at a set temperature; a carrier gas heating unit which is disposed in an introduction line L1 and heats a carrier gas; a main measurement unit which is disposed in an outward conduction line L2 and obtains data relating to a gas of the precursor; and a carrier gas temperature control unit for controlling the temperature of the carrier gas heating unit in accordance with a measurement result of the main measurement unit.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: November 21, 2023
    Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Toshiyuki Nakagawa, Kouki Morimoto, Kazutaka Yanagita, Takashi Kameoka, Yuki Kumamoto, Kazuma Suzuki, Mikio Goto
  • Patent number: 11725278
    Abstract: A system and method for plasma enhanced deposition processes. An exemplary semiconductor manufacturing system includes a susceptor configured to hold a semiconductor wafer and a sector disposed above the susceptor. The sector includes a first plate and an overlying second plate, operable to form a plasma there between. The first plate includes a plurality of holes extending through the first plate, which vary in at least one of diameter and density from a first region of the first plate to a second region of the first plate.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kun-Mo Lin, Yi-Hung Lin, Jr-Hung Li, Tze-Liang Lee, Ting-Gang Chen, Chung-Ting Ko
  • Patent number: 11725275
    Abstract: The disclosure relates to a method for forming a low refractive index layer on a substrate. The method generally includes (a) applying a block copolymer layer on a substrate, the block copolymer including a polar polymeric block and a non-polar polymeric block; (b) swelling the block copolymer layer with a solvent to increase the block copolymer layer thickness; (c) depositing a metal oxide or metalloid oxide layer on polar polymeric blocks of the block copolymer layer; and (d) removing the block copolymer layer from the substrate, thereby forming a porous metal oxide or metalloid oxide layer on the substrate.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: August 15, 2023
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Elena Shevchenko, Diana Berman, Supratik Guha
  • Patent number: 11718911
    Abstract: A deposition method includes causing aminosilane gas to be adsorbed on a substrate in which a recessed portion is formed on a surface of the substrate; causing a first silicon oxide film to be stacked on the substrate by supplying oxidation gas to the substrate to oxidize the aminosilane gas adsorbed on the substrate; and performing a reforming process on the first silicon oxide film by activating, by plasma, a first mixed gas including helium and oxygen, and supplying the first mixed gas to the first silicon oxide film.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: August 8, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Takashi Chiba, Jun Sato
  • Patent number: 11718569
    Abstract: A production method for a composite material, which includes a porous substrate and a silicon carbide film formed on a surface of a material forming the porous substrate, includes causing a silicon source containing a silicon atom, a chlorine source containing a chlorine atom, and a carbon source containing a carbon atom to react with each other to form the silicon carbide film on the surface of the material forming the porous substrate.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: August 8, 2023
    Assignee: IHI Corporation
    Inventors: Yuuta Ootsuka, Yasutomo Tanaka, Hisato Inoue, Wataru Kubota, Masato Ishizaki, Yasuyuki Fukushima, Izumi Matsukura
  • Patent number: 11713281
    Abstract: Systems for and methods of manufacturing a ceramic matrix composite include introducing a gaseous precursor into an inlet portion of a reaction furnace having a chamber comprising the inlet portion and an outlet portion that is downstream of the inlet portion, and delivering a mitigation agent, such as water vapor or ammonia, into an exhaust conduit in fluid communication with and downstream of the outlet portion of the reaction chamber so as to control chemical reactions occurring with the exhaust chamber. Introducing the gaseous precursor densifies a porous preform, and introducing the mitigation agent shifts the reaction equilibrium to disfavor the formation of harmful and/or pyrophoric byproduct deposits within the exhaust conduit.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: August 1, 2023
    Assignee: GOODRICH CORPORATION
    Inventors: Ying She, Naveen Menon, Gavin Charles Richards, Zissis A. Dardas, Thomas P. Filburn
  • Patent number: 11692102
    Abstract: Example embodiments relate to a method of protecting a surface of an e-vaping device portion from corrosion, the method including preparing a coating mixture configured to protect the surface from corrosion, and coating the surface with a protective coating based on the coating mixture, wherein the coating is performed via one of electrodeposition, dipping, spraying, and vapor deposition, and the coating mixture includes at least one of a silane and a resin.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: July 4, 2023
    Assignee: ALTRIA CLIENT SERVICES LLC
    Inventors: Georgios D. Karles, Rangaraj S. Sundar
  • Patent number: 11685998
    Abstract: Examples of a substrate processing apparatus includes a device for subjecting a substrate to processing, and a controller for modifying a control parameter predetermined to control the device with a first modification value and a second modification value that vary over time, thereby calculating a modified parameter, and controlling the device based on the modified parameter, wherein the first modification value has a shorter term for modifying the control parameter than the second modification value.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: June 27, 2023
    Assignee: ASM IP Holding B.V.
    Inventors: Takashi Wada, Satoru Noguchi, Wataru Adachi, Daisuke Muramatsu
  • Patent number: 11629403
    Abstract: A method can include vapor depositing a corrosion resistant coating to internal and external surfaces of a metallic air data probe. For example, vapor depositing can include using atomic layer deposition (ALD). The method can include placing the metallic air data probe in a vacuum chamber and evacuating the vacuum chamber before using vapor deposition. The corrosion resistant coating can be or include a ceramic coating. In certain embodiments, vapor depositing can include applying a first precursor, then applying a second precursor to the first precursor to form the ceramic coating.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: April 18, 2023
    Assignee: Rosemount Aerospace Inc.
    Inventors: Steven Poteet, Marc E. Gage, Blair A. Smith
  • Patent number: 11591691
    Abstract: Disclosed is a method of forming a thin film using a surface protection material, the method comprising supplying the surface protection material to the inside of a chamber on which a substrate is placed so that the surface protection material is adsorbed to the substrate, discharging the unadsorbed surface protection material from the inside of the chamber by purging the interior of the chamber, supplying a metal precursor to the inside of the chamber so that the metal precursor is adsorbed to the substrate, discharging the unadsorbed metal precursor from the inside of the chamber by purging the interior of the chamber, and supplying a reaction material to the inside of the chamber so that the reaction material reacts with the adsorbed metal precursor to form the thin film.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: February 28, 2023
    Assignees: EGTM CO., LTD., SK HYNIX INC.
    Inventors: Geun Su Lee, Jae Min Kim, Ha Na Kim, Woong Jin Choi, Eun Ae Jung, Dong Hyun Lee, Myung Soo Lee, Ji Won Moon, Dong Hak Jang, Hyun Sik Noh
  • Patent number: 11584986
    Abstract: Provided herein are methods for forming a layer on a substrate wherein the layer is formed selectively on a first region of the substrate relative to a second region having a composition different than the first region. Methods of the invention include selectively forming a layer using an inhibitor agent capable of reducing the average acidity of a first region of the substrate having a composition characterized by a plurality of hydroxyl groups. Methods of the invention include selectively forming a layer by exposure of the substrate to: (i) an inhibitor agent comprising a substituted or an unsubstituted amine group, a substituted or an unsubstituted pyridyl group, a carbonyl group, or a combination of these, and (ii) a precursor gas comprising one or more ligands selected from the group consisting of a carbonyl group, an allyl group, combination thereof.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: February 21, 2023
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John R. Abelson, Elham Mohimi, Gregory S. Girolami, Sumeng Liu, Zhejun Zhang
  • Patent number: 11555245
    Abstract: In a metal oxide film formation method of the present invention, the following steps are performed. In a solution vessel, a raw-material solution including aluminum as a metallic element is turned into a mist so that a raw-material solution mist is obtained. In a solution vessel provided independently of the solution vessel, a reaction aiding solution including a reaction aiding agent for formation of aluminum oxide is turned into a mist so that an aiding-agent mist is obtained. Then, the raw-material solution mist and the aiding-agent mist are fed to a nozzle provided in a reactor vessel via paths. Thereafter, the raw-material solution mist and the aiding-agent mist are mixed in the nozzle so that a mixed mist is obtained. Then, the mixed mist is fed onto a back surface of a heated P-type silicon substrate.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: January 17, 2023
    Assignees: Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kyoto University, Kochi Prefectural Public University Corporation
    Inventors: Takahiro Hiramatsu, Hiroyuki Orita, Toshiyuki Kawaharamura, Shizuo Fujita, Takayuki Uchida
  • Patent number: 11549176
    Abstract: A process for densifying annular porous substrates by chemical vapour infiltration, includes providing a plurality of unit modules including a support plate on which is formed a stack of substrates, the support plate including a central gas inlet opening communicating with an internal volume formed by the central passages of the stacked substrates and gas outlet openings distributed angularly around the central opening, and a thermal mass cylinder disposed around the stack of substrates having a first end integral with the support plate and a second free end, forming stacks of unit modules in the chamber of a densification furnace, and injecting into the stacks of unit modules a gas phase including a gas precursor of a matrix material to be deposited within the porosity of the substrates.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: January 10, 2023
    Assignee: SAFRAN CERAMICS
    Inventors: Franck Lamouroux, Rémy Dupont, William Ros
  • Patent number: 11450591
    Abstract: An atomic layer deposition (ALD) process for depositing a fluorine-containing thin film on a substrate can include a plurality of super-cycles. Each super-cycle may include a metal fluoride sub-cycle and a reducing sub-cycle. The metal fluoride sub-cycle may include contacting the substrate with a metal fluoride. The reducing sub-cycle may include alternately and sequentially contacting the substrate with a reducing agent and a nitrogen reactant.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: September 20, 2022
    Assignee: ASM IP HOLDING B.V.
    Inventors: Tom E. Blomberg, Linda Lindroos, Hannu Huotari
  • Patent number: 11414744
    Abstract: A method to operate an apparatus for feeding liquid metal to an evaporator device in a vacuum chamber, wherein the feed tube runs from a container adapted to contain a liquid metal to the evaporator device and wherein an electromagnetic pump is provided in the feed tube and a valve in the feed tube between the electromagnetic pump and the evaporator device. An at least partially gas permeable electromagnetic pump, which is enclosed in a pressure controlled enclosure, is used in the method wherein electromagnetic pump and the pressure controlled enclosure are controlled such that filling and draining of the evaporator device and feed tube can be done without affecting the vacuum pressure in the vacuum chamber.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: August 16, 2022
    Assignee: TATA STEEL NEDERLAND TECHNOLOGY B.V.
    Inventors: Edzo Zoestbergen, Colin Commandeur, Roland Jan Snijders, Eduard Paul Mattheus Bakker, Peter William Hazelett, Douglas Alexander Hamilton, Stephen James Widdis, Timothy Dean Kaiser