Patents Examined by Natalia Gondarenko
  • Patent number: 11940702
    Abstract: A novel composite oxide semiconductor which can be used in a transistor including an oxide semiconductor film is provided. In the composite oxide semiconductor, a first region and a second region are mixed. The first region includes a plurality of first clusters containing In and oxygen as main components. The second region includes a plurality of second clusters containing Zn and oxygen as main components. The plurality of first clusters have portions connected to each other. The plurality of second clusters have portions connected to each other.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: March 26, 2024
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 11943928
    Abstract: Embodiments of a channel hole plug structure of 3D memory devices and fabricating methods thereof are disclosed. The memory device includes an alternating layer stack disposed on a substrate, an insulating layer disposed on the alternating dielectric stack, a channel hole extending vertically through the alternating dielectric stack and the insulating layer, a channel structure including a channel layer in the channel hole, and a channel hole plug in the insulating layer and above the channel structure. The channel hole plug is electrically connected with the channel layer. A projection of the channel hole plug in a lateral plane covers a projection of the channel hole in the lateral plane.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: March 26, 2024
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Li Hong Xiao, Zhenyu Lu, Qian Tao, Yushi Hu, Jun Chen, LongDong Liu, Meng Wang
  • Patent number: 11923447
    Abstract: A semiconductor device includes a substrate, an insulating layer provided over the substrate, a collection of metal particles exposed on the surface of the insulating layer, and a diamond layer provided on the surface of the insulating layer on which the metal particles are exposed. By controlling the surface density and particle size of the metal particles on the surface of the insulating layer, the surface density of diamond nuclei that are formed on the surface is controlled. Diamond grains are formed by crystal growth using the diamond nuclei as starting material, thereby forming a diamond layer. The control of the surface density of the diamond nuclei results in forming, by the crystal growth, the diamond grains with a grain size exhibiting a relatively high thermal conductivity in the crystal growth initial layer of the diamond layer and improving the thermal conductivity between the diamond layer and the substrate.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: March 5, 2024
    Assignee: FUJITSU LIMITED
    Inventors: Junya Yaita, Atsushi Yamada
  • Patent number: 11916149
    Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a transistor formed on a silicon substrate and a capacitor electrically connected to the transistor by a conductive via. The capacitor comprises upper and lower conductive oxide electrodes on opposing sides of a polar layer, wherein the lower conductive oxide electrode is electrically connected to a drain of the transistor.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: February 27, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
  • Patent number: 11916117
    Abstract: A semiconductor Schottky rectifier built in an epitaxial semiconductor layer over a substrate has an anode structure and a cathode structure extending from the surface of the epitaxial layer. The cathode contact structure has a trench structure near the epi-layer and a vertical sidewall surface covered with a gate oxide layer. The cathode structure further comprises a polysilicon element adjacent to the gate oxide layer.
    Type: Grant
    Filed: November 10, 2022
    Date of Patent: February 27, 2024
    Assignee: DIODES INCORPORATED
    Inventors: Kolins Chao, John Huang
  • Patent number: 11908895
    Abstract: An electrostatic discharge protection device includes: an emitter region disposed on a semiconductor substrate; a base region surrounding the emitter region; a first collector region surrounding the base region; a second collector region surrounding the first collector region; a second conductivity-type drift region below the emitter region, and being deeper than the base region; a second conductivity-type well region disposed below the base region, and having a junction interface with the second conductivity-type drift region; and a plurality of isolation portions disposed between the emitter region, the base region, and the first collector region and the second collector region.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: February 20, 2024
    Inventors: Jongkyu Song, Jaehyun Yoo, Jangkyu Choi, Jin Heo, Changsu Kim, Chanhee Jeon
  • Patent number: 11908926
    Abstract: The present invention relates to a method for assembling molecules on the surface of a two-dimensional material formed on a substrate, the method comprises: forming a spacer layer comprising at least one of an electrically insulating compound or a semiconductor compound on the surface of the two-dimensional material, depositing molecules on the spacer layer, annealing the substrate with spacer layer and the molecules at an elevated temperature for an annealing time duration, wherein the temperature and annealing time are such that at least a portion of the molecules are allowed to diffuse through the spacer layer towards the surface of the two-dimensional material to assemble on the surface of the two-dimensional material. The invention also relates to an electronic device.
    Type: Grant
    Filed: February 3, 2023
    Date of Patent: February 20, 2024
    Assignee: GRAPHENSIC AB
    Inventors: Samuel Lara-Avila, Hans He, Sergey Kubatkin
  • Patent number: 11903195
    Abstract: Embodiments of semiconductor devices and methods for forming the semiconductor devices are disclosed. In an example, a method for forming device openings includes forming a material layer over a first region and a second region of a substrate, the first region being adjacent to the second region, forming a mask layer over the material layer, the mask layer covering the first region and the second region, and forming a patterning layer over the mask layer. The patterning layer covers the first region and the second region and including openings corresponding to the first region. The plurality of openings includes a first opening adjacent to a boundary between the first region and the second region and a second opening further away from the boundary. Along a plane parallel to a top surface of the substrate, a size of the first opening is greater than a size of the second opening.
    Type: Grant
    Filed: January 19, 2023
    Date of Patent: February 13, 2024
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Jia He, Haihui Huang, Fandong Liu, Yaohua Yang, Peizhen Hong, Zhiliang Xia, Zongliang Huo, Yaobin Feng, Baoyou Chen, Qingchen Cao
  • Patent number: 11894450
    Abstract: A disclosed structure includes a bipolar junction transistor (BJT) and a method of forming the structure. The structure includes a semiconductor layer on an insulator layer. The BJT includes a base region positioned laterally between emitter and collector regions. The emitter region includes an emitter portion of the semiconductor layer and an emitter semiconductor layer, which is within an emitter cavity in the insulator layer, which extends through an emitter opening in the emitter portion, and which covers the top of the emitter portion. The collector region includes a collector portion of the semiconductor layer and a collector semiconductor layer, which is within a collector cavity in the insulator layer, which extends through a collector opening in the collector portion, and which covers the top of the collector portion. Optionally, the structure also includes air pockets within the emitter and collector cavities.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: February 6, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Shesh Mani Pandey, Jeffrey B. Johnson
  • Patent number: 11894457
    Abstract: Disclosed is a semiconductor device and a method for manufacturing the same. The semiconductor device comprises a drift region on a substrate, a well region on the drift region, a source-end doped region in the well region, a drain-end doped region on the drift region, and a gate structure which is located between a source end and a drain end, located at a position of the well region, and forms a channel region in the well region. The source-end doped region comprises a first doped region and a second doped region with opposite doping types, the channel region connects the first doped region and the drift region. The first doped region and the second doped region of the source end are equivalently close to the gate structure, a distance between the second doped region and a PN junction surface formed by the drift region and the well region is reduced.
    Type: Grant
    Filed: May 9, 2021
    Date of Patent: February 6, 2024
    Assignee: JOULWATT TECHNOLOGY CO., LTD.
    Inventor: Weiwei Ge
  • Patent number: 11887979
    Abstract: A transient voltage suppression device and a manufacturing method therefor, the transient voltage suppression device including: a substrate, a first conductivity type well region and a second conductivity type well region disposed in the substrate. The first conductivity type well region includes a first well, a second well, and a third well. The second conductivity type well region includes a fourth well that isolates the first well from the second well, and a fifth well that isolates the second well from the third well. The device further includes a Zener diode well region provided in the first well, a first doped region provided in the Zener diode well region, a second doped region provided in the Zener diode well region, a third doped region provided in the second well, a fourth doped region provided in the third well, and a fifth doped region provided in the third well.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 30, 2024
    Assignee: CSMC TECHNOLOGIES FAB2 CO., LTD.
    Inventors: Shikang Cheng, Yan Gu, Sen Zhang
  • Patent number: 11881395
    Abstract: Embodiments of the disclosure provide a lateral bipolar transistor on a semiconductor fin and methods to form the same. A bipolar transistor structure according to the disclosure may include a doped semiconductor layer coupled to a base contact. A first semiconductor fin on the doped semiconductor layer may have a first doping type. An emitter/collector (E/C) material may be on a sidewall of an upper portion of the first semiconductor fin. The E/C material has a second doping type opposite the first doping type. The E/C material is coupled to an E/C contact.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: January 23, 2024
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Judson R. Holt, Hong Yu, Alexander M. Derrickson
  • Patent number: 11869986
    Abstract: A semiconductor device which includes two or more integrated deep trench features configured as a Zener diode. The Zener diode includes a plurality of deep trenches extending into semiconductor material of the substrate and a dielectric deep trench liner that includes a dielectric material. The deep trench further includes a doped sheath contacting the deep trench liner and an electrically conductive deep trench filler material within the deep trench. The doped sheath of adjacent deep trenches overlap and form a region of higher doping concentration which sets the breakdown voltage of the Zener diode. The Zener diode can be used as a triggering diode to limit the voltage on other components in a semiconductor device.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: January 9, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Umamaheswari Aghoram, Akram Ali Salman, Binghua Hu, Alexei Sadovnikov
  • Patent number: 11862718
    Abstract: Techniques, a system, and architecture are disclosed for top side transistor heat dissipation. The heat dissipation is done through single crystal epitaxially grown layer such as AlN. The architecture may include a back side heat sink to increase thermal dissipation as well. The architecture may further include a pseudomorphic channel layer that is lattice matched to the substrate.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: January 2, 2024
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Gregg H. Jessen
  • Patent number: 11855238
    Abstract: A light emitting element includes: a semiconductor structure including: a substrate, an n-side nitride semiconductor layer located on the substrate, and a p-side nitride semiconductor layer located on the n-side nitride semiconductor layer, wherein a p-side nitride semiconductor side of the semiconductor structure is a light extraction face side, and an n-side nitride semiconductor side of the semiconductor structure is a mounting face side; a first protective layer located on and in direct contact with an upper face of the p-side nitride semiconductor layer in a region corresponding to the peripheral portion of the p-side nitride semiconductor layer; and a current diffusion layer located on and in direct contact with an upper face of the p-side nitride semiconductor layer in a region corresponding to the area inside of the peripheral portion. The current diffusion layer does not overlap the first protective layer in a top view.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: December 26, 2023
    Assignee: NICHIA CORPORATION
    Inventors: Shun Kitahama, Yoshiki Inoue, Kazuhiro Nagamine, Junya Narita
  • Patent number: 11848288
    Abstract: In an embodiment, a device includes: a conductive shield on a first dielectric layer; a second dielectric layer on the first dielectric layer and the conductive shield, the first and second dielectric layers surrounding the conductive shield, the second dielectric layer including: a first portion disposed along an outer periphery of the conductive shield; a second portion extending through a center region of the conductive shield; and a third portion extending through a channel region of the conductive shield, the third portion connecting the first portion to the second portion; a coil on the second dielectric layer, the coil disposed over the conductive shield; an integrated circuit die on the second dielectric layer, the integrated circuit die disposed outside of the coil; and an encapsulant surrounding the coil and the integrated circuit die, top surfaces of the encapsulant, the integrated circuit die, and the coil being level.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tzu-Sung Huang, Chen-Hua Yu, Hung-Yi Kuo, Hao-Yi Tsai, Ming Hung Tseng
  • Patent number: 11837664
    Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor, which in turn comprises a polar layer comprising a crystalline base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen, wherein the dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV.
    Type: Grant
    Filed: October 10, 2022
    Date of Patent: December 5, 2023
    Assignee: Kepler Computing Inc.
    Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
  • Patent number: 11837628
    Abstract: A display array including a semiconductor stacked layer, an insulating layer, a plurality of electrode pads, and a driving backplane is provided. The semiconductor stacked layer has a plurality of light emitting regions arranged along a reference plane. The insulating layer is disposed to an outer surface of the semiconductor stacked layer and contacts the semiconductor stacked layer. The insulating layer has a plurality of openings respectively corresponding to the plurality of light emitting regions. The electrode pads are disposed to the insulating layer and are respectively electrically connect the plurality of light emitting regions through the plurality of openings. The driving backplane is disposed to the semiconductor stacked layer and electrically connected to the plurality of electrode pads, wherein a light emitting material layer of the semiconductor stacked layer has consistency along an extension direction of the reference plane.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: December 5, 2023
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Hsien Wu, Chia-Hsin Chao, Yen-Hsiang Fang
  • Patent number: 11830871
    Abstract: Provided is a semiconductor device including a semiconductor substrate; a transistor portion provided in the semiconductor substrate; a current sensing portion for detecting current flowing through the transistor portion; an emitter electrode set to an emitter potential of the transistor portion; a sense electrode electrically connected to the current sensing portion; and a Zener diode electrically connected between the emitter electrode and the sense electrode. Provided is a semiconductor device fabricating method including providing a transistor portion in a semiconductor substrate; providing a current sensing portion for detecting current flowing through the transistor portion; providing an emitter electrode set to an emitter potential of the transistor portion; providing a sense electrode electrically connected to the current sensing portion; and providing a Zener diode electrically connected between the emitter electrode and the sense electrode.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: November 28, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Kaname Mitsuzuka, Yuichi Onozawa
  • Patent number: 11824109
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip a first undoped layer overlies a substrate. A first barrier layer overlies the first undoped layer and has a first thickness. A first doped layer overlies the first barrier layer and is disposed laterally within an n-channel device region of the substrate. A second barrier layer overlies the first barrier layer and is disposed within a p-channel device region that is laterally adjacent to the n-channel device region. The second barrier layer has a second thickness that is greater than the first thickness. A second undoped layer overlies the second barrier layer. A second doped layer overlies the second undoped layer. The second undoped layer and the second doped layer are disposed within the p-channel device region.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: November 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Man-Ho Kwan, Fu-Wei Yao, Chun Lin Tsai, Jiun-Lei Jerry Yu, Ting-Fu Chang