Patents Examined by Sean Luck
  • Patent number: 9997329
    Abstract: An evaluation method according to an embodiment is to evaluate a precision of an aperture formed with multiple openings, and includes steps of forming a first evaluation pattern based on evaluation data using multiple electron beams generated by electron beam that has passed through the aperture, dividing the aperture into multiple regions, each of the regions including the multiple openings and defining the multiple divided regions, forming a second evaluation pattern based on evaluation data using the electron beam that has passed through a first divided region among the multiple divided regions, comparing the first evaluation pattern with the second evaluation pattern, and evaluating the precision of the aperture based on the comparison result between the first evaluation pattern and the second evaluation pattern.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: June 12, 2018
    Assignee: NuFlare Technology, Inc.
    Inventor: Rieko Nishimura
  • Patent number: 9995763
    Abstract: A scanning probe microscope (SPM) system and associated method. The SPM system having a probe adapted to interact with nanoscale features of a sample and scan within a target region to produce a three-dimensional image of that target region, the system maintaining location information for a plurality of features of interest of the sample according to a sample-specific coordinate system, wherein the SPM system is configured to adjust positioning of the probe relative to the sample according to a SPM coordinate system, the SPM system further configured to manage a dynamic relationship between the sample-specific coordinate system and the SPM coordinate system by determining a set of alignment errors between the sample-specific coordinate system and the SPM coordinate system and apply corrections to the SPM coordinate system to offset the determined alignment errors.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: June 12, 2018
    Assignee: Bruker Nano, Inc.
    Inventors: Jason Osborne, Eric Milligan, Andrew Lopez, Xianghai Wu, Sean Hand, Vladimir Fonoberov
  • Patent number: 9984851
    Abstract: An ion implanter includes an energy analyzer electromagnet provided between an ion source and a processing chamber. The energy analyzer electromagnet includes a Hall probe configured to generate a measurement output in response to a deflecting magnetic field and an NMR probe configured to generate an NMR output. A control unit of the ion implanter includes a magnetic field measurement unit configured to measure the deflecting magnetic field in accordance with a known correspondence between the deflecting magnetic field and the measurement output, a magnetic field determination unit configured to determine the deflecting magnetic field from the NMR output, and a Hall probe calibration unit configured to update the known correspondence by using the deflecting magnetic field determined from the NMR output and a new measurement output of the Hall probe corresponding to the determined deflecting magnetic field.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: May 29, 2018
    Assignee: SUMITOMO HEAVY INDUSTRIES ION TECHNOLOGY CO., LTD.
    Inventor: Hiroyuki Kariya
  • Patent number: 9968697
    Abstract: The UV sanitizing device is a wheeled cart that is adapted for use in sanitizing the garments and personal equipment used by health care professionals. The UV sanitizing device uses ultraviolet radiation to sanitize objects contained within the cabinet. The interior surfaces of the cabinet supports a plurality of UV chambers that generate the UV radiation required for use in sanitizing the contents of the cabinet. The cabinet is further organized into two chambers such that shoes can be sanitized separately from the other articles being sanitized. The UV sanitizing device comprises a cabinet, a plurality of UV chambers, a plurality of wheels, a closure, a first container, and a second container.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: May 15, 2018
    Inventor: Eric Philipps
  • Patent number: 9966226
    Abstract: A cross-section processing and observation method performed by a cross-section processing and observation apparatus comprises a cross-section processing step of forming a cross-section by irradiating a sample with an ion beam; a cross-section observation step of obtaining an observation image of the cross-section by irradiating the cross-section with an electron beam; and repeating the cross-section processing step and the cross-section observation step so as to obtain observation images of a plurality of cross-sections. In a case where Energy Dispersive X-ray Spectrometry (EDS) measurement of the cross-section is performed and an X-ray of a specified material or of a non-specified material that is different from a pre-specified material is detected, an irradiation condition of the ion beam is changed so as to obtain observation images of a plurality of cross-sections of the specified material, and the cross-section processing and observation of the specified material is performed.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: May 8, 2018
    Assignee: HITACHI HIGH-TECH SCIENCE CORPORATION
    Inventors: Atsushi Uemoto, Xin Man, Tatsuya Asahata
  • Patent number: 9960013
    Abstract: The present disclosure provides one embodiment of a method that includes slicing a first sub-polygon out of the pattern layout and writing the first sub-polygon onto the substrate using a beam with a first beam setting that is associated with the first sub-polygon. The method additional includes slicing a second sub-polygon out of the remaining pattern layout that does not include the first sub-polygon. The second sub-polygon interfaces with the first sub-polygon on at least one edge. Also, the method includes, without turning off the beam after writing the first sub-polygon onto the substrate, writing the second sub-polygon onto the substrate with a second beam setting that is associated with the second sub-polygon.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: May 1, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Shih-Ming Chang
  • Patent number: 9960028
    Abstract: The invention generally relates to systems and methods for analyzing a sample from a surface. In certain aspects, the invention provides systems that include a sample introduction member that has an inlet, an outlet, and an opening along a wall of the sample introduction member. The sample introduction member may be configured such that the opening couples with a surface that includes a sample in a manner in which molecules of the sample enter the sample introduction member via the opening and exit the sample introduction member via the outlet. A mass spectrometer is configured to receive the molecules of the sample.
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: May 1, 2018
    Assignee: Purdue Research Foundation
    Inventors: Zheng Ouyang, Xiao Wang, Xiaoyu Zhou
  • Patent number: 9953798
    Abstract: The present invention pertains to an apparatus for generating a charged particle beam comprising a magnetic element for controlling the profile of the beam in a predetermined plane. A cathode can be provided for emitting charged particles and an anode for accelerating the charged particles along an axis of travel. The present invention also pertains to a method for generating a particle beam that has a uniform profile in a predetermined plane comprising inducing emission of charged particles from an emitter, accelerating those particles along and toward an axis of beam travel, generating a magnetic field with a component aligned with the axis of beam travel but different in the predetermined plane than at the emitter, and modifying the beam profile.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: April 24, 2018
    Assignee: NOVARAY MEDICAL, INC.
    Inventors: Thomas A Case, Josh Star-Lack, Brian Patrick Wilfley
  • Patent number: 9953801
    Abstract: A resolving aperture assembly for an ion implantation system has a first plate and a second plate, where the first plate and second plate generally define a resolving aperture therebetween. A position of the first plate with respect to the second plate generally defines a width of the resolving aperture. One or more actuators are operably coupled to one or more of the first plate and second plate and are configured to selectively vary the position the first plate and second plate with respect to one another, thus selectively varying the width of the resolving aperture. A servo motor precisely varies the resolving aperture width and a pneumatic cylinder independently selectively closes the resolving aperture. A downstream position actuator varies a position of the resolving aperture along a path of the ion beam, and a controller controls the one or more actuators based on desired properties of the ion beam.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: April 24, 2018
    Assignee: Axcelis Technologies, Inc.
    Inventors: Michael Paul Cristoforo, Justin White McCabe
  • Patent number: 9941094
    Abstract: A source assembly for producing an ion beam and comprising a collision ionization ion source having: A pair of stacked plates, sandwiched about an intervening gap; An ionization space between said plates, connected to a gas supply duct; An input zone, provided in a first of said plates, to admit an input beam of charged particles to said ionization space; An output aperture, located opposite said input zone and provided in the second of said plates, to allow emission of a flux of ions produced in said ionization space by said input beam, which source assembly comprises: A carrier provided with a plurality of different collision ionization ion sources that mutually differ in respect of a gap height d between said plates; A selecting device, which allows a given one of said ion sources to be individually selected for production of said ion beam.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: April 10, 2018
    Assignee: FEI Company
    Inventors: Leon van Kouwen, Gerard Nicolaas Anne van Veen
  • Patent number: 9941089
    Abstract: A primary ion source subassembly for use with a secondary ion mass spectrometer may include a unitary graphite ionizer tube and reservoir base. A primary ion source may include a capillary insert defining an ionizer aperture. An ionizer aperture may be centrally arranged in an outwardly protruding conical or frustoconical surface, and may be overlaid with a refractory metal coating or sheath. Parameters including ionizer surface shape, ionizer materials, ionizer temperature, and beam stop plate orifice geometry may be manipulated to eliminate ghost images. A graphite tube gasket with a dual tapered surface may promote sealing of a source material cavity.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: April 10, 2018
    Assignee: ARIZONA BOARD OF REGENTS, A BODY CORPORATE OF THE STATE OF ARIZONA, ACTING FOR AND ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Peter Williams, Karen Amanda Williams, Maitrayee Bose, John Prince
  • Patent number: 9939407
    Abstract: A method and device for separating ions according to their ion mobility are disclosed. An ion guide is provided having a plurality of electrodes arranged to form an ion guiding path that extends in a closed loop. RF voltages are supplied to at least some of the electrodes in order to confine ions within said ion guiding path. A DC voltage gradient is maintained along at least a portion of a longitudinal axis of said ion guide, wherein the voltage gradient urges ions along the ion guide such that the ions separate according to their ion mobility as the ions pass along the ion guide. As time progresses the portion of the ion guide along which the DC voltage gradient is maintained is moved along the ion guide. An ion exit region is provided which moves around said ion guide such that ions exit said ion guide at different locations at different times.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 10, 2018
    Assignee: Micromass UK Limited
    Inventors: Kevin Giles, Jason Lee Wildgoose
  • Patent number: 9939728
    Abstract: A target processing machine (100), such as a lithography or inspection machine, comprising a rigid base plate (150), a projection column (101) for projecting one or more optical or particle beams on to a target (130), a support frame (102) supporting the projection column, the support frame being supported by and fixed to the base plate, a stage comprising a movable part (128) for carrying the target and a fixed part (132, 133) being supported by and fixed to the base plate, a beam sensor (160) for detecting one or more of the beams projected by the column, the beam sensor at least in part being supported by and fixed to the base plate, and a vacuum chamber (110) enclosing the support frame and the column, for maintaining a vacuum environment in the interior space of the chamber, the vacuum chamber formed with the base plate forming part thereof, and supporting a plurality of wall panels (171, 172) including a plurality of side wall panels (171) supported by and fixed thereto.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: April 10, 2018
    Assignee: MAPPER LITHOGRAPHY IP B.V.
    Inventor: Jerry Johannes Martinus Peijster
  • Patent number: 9934934
    Abstract: Electrostatic lenses for focusing a beam of charged particles, and in particular an electron beam, are used especially in the electron guns of electron microscopes or electron-beam lithography apparatuses. The present disclosure improves the possibilities for focusing the particle beam, in particular an electron beam emitted by a cathode. The lens comprises at least one conducting electrode having at least one through-opening for the passage of an electron beam. Different electric fields are set up upstream and downstream of the opening. The passage opening is at least partially closed by a planar or curved thin membrane of semi-conducting material that is transparent to electrons and has a high dielectric permittivity. Structuring the membrane (holes or thickened portions of electrodes deposited on the membrane) makes it possible to correct lens aberration defects.
    Type: Grant
    Filed: May 26, 2014
    Date of Patent: April 3, 2018
    Assignee: Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventor: Christophe Constancias
  • Patent number: 9934933
    Abstract: Extractors and extractor systems minimize the generation of secondary electrons which interact with and degrade the primary electron beam. This can improve the performance of an electron beam system, such as a scanning electron microscope. The extractor may include a frustoconical aperture that widens as distance from the source of the electron beam increases. The entrance into the frustoconical aperture also can include a curved edge.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: April 3, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Laurence S. Hordon, Nikolai Chubun, Luca Grella, Xinrong Jiang, Daniel Bui, Kevin Cummings, Christopher Sears, Oscar G. Florendo
  • Patent number: 9928988
    Abstract: An ion source includes an ion source chamber having a longitudinal axis, the ion source chamber operative to define a plasma therein. The ion source also includes a split solenoid assembly comprising a first solenoid and a second solenoid that are mutually disposed along opposite sides of the ion source chamber, where each of the first solenoid and second solenoid comprises a metal member having a long axis parallel to the longitudinal axis of the ion source chamber, and a main coil having a coil axis parallel to the long axis and comprising a plurality of windings that circumscribe the metal member. The main coil defines a coil footprint that is larger than an ion source chamber footprint of the ion source chamber.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 27, 2018
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: James Buff
  • Patent number: 9929002
    Abstract: A mass spectrometer is disclosed comprising a first mass filter comprising a plurality of electrodes and a first device arranged and adapted to generate an axial force which drives at least some ions axially through or along the first mass filter and a quadrupole mass filter or mass analyzer arranged downstream of the mass filter.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: March 27, 2018
    Assignee: MIROMASS UK LIMITED
    Inventors: Kevin Giles, Martin Raymond Green, Darren Hewitt, Daniel James Kenny, David J. Langridge, Steven Derek Pringle, Jason Lee Wildgoose
  • Patent number: 9922813
    Abstract: The invention generally relates to systems and methods for ejection of ions from an ion trap. In certain embodiments, systems and methods of the invention sum two different frequency signals into a single summed signal that is applied to an ion trap. In other embodiments, an amplitude of a single frequency signal is modulated as the single frequency signal is being applied to the ion trap. In other embodiments, a first alternating current (AC) signal is applied to an ion trap that varies as a function of time, while a constant radio frequency (RF) signal is applied to the ion trap.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: March 20, 2018
    Assignee: Purdue Research Foundation
    Inventors: Robert Graham Cooks, Dalton Snyder
  • Patent number: 9915626
    Abstract: Techniques, systems, and devices are disclosed for constructing a scattering and stopping relationship of cosmic-ray charged particles (including cosmic-ray electrons and/or cosmic-ray muons) over a range of low-atomic-mass materials, and to detect and identify content of a volume of interest (VOI) exposed to cosmic-ray charged particles based on the constructed scattering and stopping relationship. In one aspect, a process for constructing a scattering-stopping relationship for a range of low-density materials exposed to cosmic-ray charged particles is disclosed. This technique first determines a scattering parameter and a stopping parameter for each material within the range of low-density materials exposed to charged particles from cosmic ray. The technique then establishes a scattering-stopping relationship of cosmic ray charged particles for the range of low-density materials based on the determined pairs of scattering and stopping parameters associated with the range of low-density materials.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: March 13, 2018
    Assignee: Decision Sciences International Corporation
    Inventors: Gary Blanpied, Sankaran Kumar, Dustin Dorroh, Craig Morgan, Michael James Sossong
  • Patent number: 9916913
    Abstract: Embodiments described herein provide for a method of launching atoms in an atom interferometer. The method includes determining a direction of the total effective acceleration force on the atoms, controlling a direction of launch of the atoms for measurement in the atom interferometer based on the direction of the total effective acceleration force, and obtaining measurements from the atoms.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: March 13, 2018
    Assignee: Honeywell International Inc.
    Inventors: Robert Compton, Kenneth Salit