Patents Examined by Shaka White
  • Patent number: 9472448
    Abstract: A method includes forming a metallic layer over a Metal-Oxide-Semiconductor (MOS) device, forming reverse memory posts over the metallic layer, and etching the metallic layer using the reverse memory posts as an etching mask. The remaining portions of the metallic layer include a gate contact plug and a source/drain contact plug. The reverse memory posts are then removed. After the gate contact plug and the source/drain contact plug are formed, an Inter-Level Dielectric (ILD) is formed to surround the gate contact plug and the source/drain contact plug.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: October 18, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yuan Ting, Jyu-Horng Shieh
  • Patent number: 9455184
    Abstract: A method comprises depositing a first alloy layer over a substrate, depositing a metal layer over the first alloy layer, depositing a second alloy layer over the metal layer, patterning the first alloy layer, the metal layer and the second alloy layer to form a metal structure and depositing a dielectric layer over the metal structure through a chemical vapor deposition (CVD) process.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: September 27, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ching-Fu Yeh, Hsiang-Huan Lee
  • Patent number: 9444040
    Abstract: A sidewall-type memory cell (e.g., a CBRAM, ReRAM, or PCM cell) may include a bottom electrode, a top electrode layer defining a sidewall, and an electrolyte layer arranged between the bottom and top electrode layers, such that a conductive path is defined between the bottom electrode and a the top electrode sidewall via the electrolyte layer, wherein the bottom electrode layer extends generally horizontally with respect to a horizontal substrate, and the top electrode sidewall extends non-horizontally with respect to the horizontal substrate, such that when a positive bias-voltage is applied to the cell, a conductive path grows in a non-vertical direction (e.g., a generally horizontal direction or other non-vertical direction) between the bottom electrode and the top electrode sidewall.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: September 13, 2016
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: Justin Hiroki Sato, Bomy Chen, Sonu Daryanani
  • Patent number: 9431412
    Abstract: According to one embodiment, a semiconductor memory device includes a first array extending in a first direction, a second array extending in the first direction, and a second electrode film. The second array is arranged with the first array in a second direction crossing the first direction. The second electrode film provided between the first array and the second array. The second electrode film extends in the first direction. Each of the first array and the second array include a first structure, a second structure arranged in the first direction, a fourth insulating film provided between the first structure and the second structure, and a third insulating film provided between the first structure and the second electrode film, provided also between the first structure and the fourth insulating film.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: August 30, 2016
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuya Kato, Fumitaka Arai, Satoshi Nagashima, Katsuyuki Sekine, Yuta Watanabe, Keisuke Kikutani, Atsushi Murakoshi
  • Patent number: 9431437
    Abstract: A display panel includes a gate electrode and a gate line on a substrate, a gate insulating layer and an active layer sequentially on the gate electrode and the gate line, a planarization layer which is on the substrate and compensates for a step difference between the substrate, and the gate electrode and the gate line, respectively, source and drain electrodes on the active layer overlapping the gate electrode and spaced apart from each other, a data line on the active layer and crossing the gate line, a protective layer which covers the planarization layer, the source and drain electrodes, and the data line, a contact hole defined in the planarization layer and partially exposing the drain electrode, and a pixel electrode on the protective layer and electrically connected to the drain electrode through the contact hole.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: August 30, 2016
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Yang-Ho Jung, SeungBo Shim, Jinho Ju, Junhong Park
  • Patent number: 9419141
    Abstract: The present disclosure relates to a device and method for strain inducing or high mobility channel replacement in a semiconductor device. The semiconductor device is configured to control current from a source to a drain through a channel region by use of a gate. A strain inducing or high mobility layer produced in the channel region between the source and drain can result in better device performance compared to Si, faster devices, faster data transmission, and is fully compatible with the current semiconductor manufacturing infrastructure.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: August 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Lien Huang, Meng-Chun Chang
  • Patent number: 9397282
    Abstract: A method of fabricating a pixelated projector display includes providing a wafer with a supporting substrate, a first semiconductive layer, an emission layer, and a second semiconductive layer. The wafer is patterned into an array of LEDs/LDs and a planarization layer is deposited over the array. One via for each LED/LD element is formed through the planarization layer. A MOTFT backplane is positioned on the planarization layer, one driver circuit in controlling electrical communication with each via through the planarization layer. A passivation layer is deposited over the MOTFT backplane and heat plugs are extended through the passivation layer, the MOTFT backplane, the planarization layer, and the III-V LED/LD wafer partially through the first semiconductive layer to thermally couple heat from the array of LEDs/LDs to the surface of the passivation layer. An upper end of the heat plugs is accessible for thermal coupling to a heat spreader and/or a heatsink.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: July 19, 2016
    Assignee: CBRITE INC.
    Inventors: Chan-Long Shieh, Gang Yu
  • Patent number: 9379154
    Abstract: A solid-state image pickup apparatus including a substrate and a solid-state image pickup device. The substrate includes an opening portion. The solid-state image pickup device is mounted as a flip chip on a lower surface of the substrate on a circumference of the opening portion and receives and photo-electrically converts light that is taken in by a lens set on an upper surface of the substrate and enters from the opening portion. The circumference of the opening portion of the substrate is thinner than other portions of the substrate.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: June 28, 2016
    Assignee: SONY CORPORATION
    Inventor: Toshiaki Iwafuchi
  • Patent number: 9373536
    Abstract: A stress reduction apparatus comprises a metal structure formed over a substrate, an inter metal dielectric layer formed over the substrate, wherein a lower portion of the metal structure is embedded in the inter metal dielectric layer and an inverted cup shaped stress reduction layer formed over the metal structure, wherein an upper portion of the metal structure is embedded in the inverted cup shaped stress reduction layer.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 21, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ying-Ti Lu, Wen-Tsao Chen, Ming-Ray Mao, Kuan-Chi Tsai
  • Patent number: 9362496
    Abstract: A resistive memory cell, e.g., CBRAM or ReRAM cell, may include a top electrode an a trench-shaped bottom electrode structure defining a bottom electrode connection and a sidewall extending from a first sidewall region adjacent the bottom electrode connection to a tip region defining a tip surface facing generally away from the bottom electrode connection, and wherein the tip surface facing away from the bottom electrode connection has a tip thickness that is less than a thickness of the first sidewall region adjacent the bottom electrode connection. An electrolyte switching region is arranged between the top electrode and the bottom electrode sidewall tip region to provide a path for the formation of a conductive filament or vacancy chain from the bottom electrode sidewall tip surface of the top electrode, via the electrolyte switching region, when a voltage bias is applied to the resistive memory cell.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: June 7, 2016
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: James Walls, Paul Fest
  • Patent number: 9355953
    Abstract: A semiconductor device with substrate-side exposed device-side electrode (SEDE) is disclosed. The semiconductor device has semiconductor substrate (SCS) with device-side, substrate-side and semiconductor device region (SDR) at device-side. Device-side electrodes (DSE) are formed for device operation. A through substrate trench (TST) is extended through SCS, reaching a DSE turning it into an SEDE. The SEDE can be interconnected via conductive interconnector through TST. A substrate-side electrode (SSE) and a windowed substrate-side passivation (SSPV) atop SSE can be included. The SSPV defines an area of SSE for spreading solder material during device packaging. A device-side passivation (DSPV) beneath thus covering the device-side of SEDE can be included. A DSE can also include an extended support ledge, stacked below an SEDE, for structurally supporting it during post-wafer processing packaging.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: May 31, 2016
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Tao Feng, Anup Bhalla
  • Patent number: 9356151
    Abstract: In some embodiments, the present disclosure pertains to methods of preparing graphene nanoribbons from a graphene film associated with a meniscus, where the method comprises patterning the graphene film while the meniscus acts as a mask above a region of the graphene film, and where the patterning results in formation of graphene nanoribbons from the meniscus-masked region of the graphene film. Additional embodiments of the present disclosure pertain to methods of preparing wires from a film associated with a meniscus, where the method comprises patterning the film while the meniscus acts as a mask above a region of the film, and where the patterning results in formation of a wire from the meniscus-masked region of the film. Additional embodiments of the present disclosure pertain to chemical methods of preparing wires from water-reactive materials.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: May 31, 2016
    Assignee: WILLIAM MARSH RICE UNIVERSITY
    Inventors: James M. Tour, Vera Abramova, Alexander Slesarev
  • Patent number: 9356195
    Abstract: A light emitting device including a support substrate, an adhesive layer on the support substrate, a conductive layer on the adhesive layer, a light emitting structure on the conductive layer, the light emitting structure including a first semiconductor layer containing AlGaN, an active layer, and a second semiconductor layer containing AlGaN, a first electrode on the light emitting structure, a metal layer disposed under the conductive layer and at an adjacent region of the conductive layer, and a passivation layer disposed on a side surface of the light emitting structure, wherein the first electrode is vertically non-overlapped with the conductive layer, wherein the conductive layer includes a first layer and a second layer on the first layer, wherein the second layer directly contacts with the light emitting structure, wherein the metal layer directly contacts with the light emitting structure, wherein the metal layer is expanded to an outer area of the light emitting structure, and wherein the passivatio
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: May 31, 2016
    Assignee: LG INNOTEK CO., LTD.
    Inventors: Hwan Hee Jeong, Kwang Ki Choi, June O Song, Sang Youl Lee
  • Patent number: 9349946
    Abstract: A method for generating quantum anomalous Hall effect is provided. A topological insulator quantum well film in 3QL to 5QL is formed on an insulating substrate. The topological insulator quantum well film is doped with a first element and a second element to form the magnetically doped topological insulator quantum well film. The doping of the first element and the second element respectively introduce hole type charge carriers and electron type charge carriers in the magnetically doped topological insulator quantum well film, to decrease the carrier density of the magnetically doped topological insulator quantum well film to be smaller than or equal to 1×1013 cm?2. One of the first element and the second element magnetically dopes the topological insulator quantum well film. An electric field is applied to the magnetically doped topological insulator quantum well film to decrease the carrier density.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: May 24, 2016
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Ya-Yu Wang, Li Lv, Cui-Zu Chang, Xiao Feng
  • Patent number: 9349950
    Abstract: A resistive memory cell, e.g., a CBRAM or ReRAM cell, may include a top electrode, a bottom electrode having an elongated trench shape defining a pair of spaced-apart bottom electrode sidewalls, and an electrolyte switching region arranged between the top electrode and at least one of the bottom electrode sidewalls to provide a path for the formation of a conductive filament or vacancy chain from the at least one bottom electrode sidewall to the top electrode when a voltage bias is applied to the cell. In addition, a memory may include an array of resistive memory cells including a top electrode structure, a plurality of trench-style bottom electrodes extending in first direction, and a plurality of inverted-trench-style electrolyte switching regions extending perpendicular to the trench-style bottom electrodes to define a two-dimensional array of spaced-apart contact areas between the electrolyte switching regions and the bottom electrodes.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: May 24, 2016
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventor: James Walls
  • Patent number: 9331244
    Abstract: A semiconductor layer including a plurality of inhomogeneous regions is provided. Each inhomogeneous region has one or more attributes that differ from a material forming the semiconductor layer. The inhomogeneous regions can include one or more regions configured based on radiation having a target wavelength. These regions can include transparent and/or reflective regions. The inhomogeneous regions also can include one or more regions having a higher conductivity than a conductivity of the radiation-based regions, e.g., at least ten percent higher.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: May 3, 2016
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Maxim S Shatalov, Alexander Dobrinsky, Alexander Lunev, Rakesh Jain, Jinwei Yang, Michael Shur, Remigijus Gaska
  • Patent number: 9324624
    Abstract: The present disclosure involves a method of fabricating a light-emitting diode (LED) wafer. The method first determines a target surface morphology for the LED wafer. The target surface morphology yields a maximum light output for LEDs on the LED wafer. The LED wafer is etched to form a roughened wafer surface. Thereafter, using a laser scanning microscope, the method investigates an actual surface morphology of the LED wafer. Afterwards, if the actual surface morphology differs from the target surface morphology beyond an acceptable limit, the method repeats the etching step one or more times. The etching is repeated by adjusting one or more etching parameters.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 26, 2016
    Assignee: EPISTAR CORPORATION
    Inventors: Chyi-Shyuan Chern, Hsin-Hsien Wu, Yung-Hsin Yang, Ching-Hua Chiu
  • Patent number: 9312149
    Abstract: A device includes a bottom chip and an active top die bonded to the bottom chip. A dummy die is attached to the bottom chip. The dummy die is electrically insulated from the bottom chip.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: April 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Cheng-Lin Huang, Szu Wei Lu, Jui-Pin Hung, Shin-Puu Jeng, Chen-Hua Yu
  • Patent number: 9302906
    Abstract: In one embodiment, a method of forming a MEMS device includes providing a silicon wafer with a base layer and an intermediate layer above an upper surface of the base layer. A first electrode is defined in the intermediate layer and an oxide portion is provided above an upper surface of the intermediate layer. A cap layer is provided on an upper surface of the oxide portion and a second electrode is defined in the cap layer. The method further includes etching the oxide portion to form a cavity such that when the second electrode and the cavity are projected onto the intermediate layer, the projected second electrode encompasses the projected cavity.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: April 5, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Ando Feyh, Andrew B. Graham
  • Patent number: 9299654
    Abstract: A semiconductor device is bonded by an anisotropic conductive film composition. The anisotropic conductive film composition includes an ethylene-vinyl acetate copolymer, a polyurethane resin, and organic fine particles. The anisotropic conductive film composition has a melt viscosity of about 2,000 to about 8,000 Pa·s at 80° C.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: March 29, 2016
    Assignee: CHEIL INDUSTRIES, INC.
    Inventors: Kyoung Hun Shin, Do Hyun Park, Hyun Joo Seo, Young Ju Shin, Kang Bae Yoon