Patents Examined by Shaka White
  • Patent number: 9196624
    Abstract: Methods and systems of fabricating a wordline protection structure are described. As described, the wordline protection structure includes a polysilicon structure formed adjacent to a memory core region. The polysilicon structure includes first doped region positioned on a core side of the polysilicon structure and a second doped region positioned on a spine side of the polysilicon structure. An un-doped region positioned between the first and second doped regions. A conductive layer is formed on top of the polysilicon structure and arranged so that it does not contact the un-doped region at either the transition between the first doped region and the un-doped region or the second doped region and un-doped region.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: November 24, 2015
    Assignee: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Bradley Marc Davis, Mark W. Randolph, Sung-Yong Chung, Hidehiko Shiraiwa
  • Patent number: 9177848
    Abstract: A semiconductor wafer contains a plurality of die with contact pads disposed on a first surface of each die. Metal vias are formed in trenches in the saw street guides and are surrounded by organic material. Traces connect the contact pads and metal vias. The metal vias can be half-circle vias or full-circle vias. The metal vias are surrounded by organic material. Redistribution layers (RDL) are formed on a second surface of the die opposite the first surface. The RDL and through-hole vias (THV) provide expanded interconnect flexibility to adjacent die. Repassivation layers are formed between the RDL on the second surface of the die for electrical isolation. The die are stackable and can be placed in a semiconductor package with other die. The RDL provide electrical interconnect to the adjacent die. Bond wires and solder bumps also provide electrical connection to the semiconductor die.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: November 3, 2015
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Heap Hoe Kuan, Linda Pei Ee Chua
  • Patent number: 9169425
    Abstract: An adhesive film includes an amine curing agent and a phenolic curing agent, and has a ratio of a storage modulus at 170° C. after 80% or more curing to a storage modulus at 40° C. before curing in the range of about 1.5 to about 3.0.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: October 27, 2015
    Assignee: CHEIL INDUSTRIES, INC.
    Inventors: Hye Jin Kim, Jae Won Choi, Ji Ho Kim, Jin Man Kim, Gyu Seok Song
  • Patent number: 9159654
    Abstract: A semiconductor device includes a semiconductor substrate having opposed main and back surfaces; first and second electrodes in a device region of the substrate, and spaced apart from each other; a metal film on the main surface and joined to the second electrode; an air gap between part of the main surface and the metal film, enveloping the first electrode, and having an opening; a cured resin closing the opening; a liquid repellent film increasing contact angle of the resin, relative to contact angles on the substrate and the metal film; a first metal film joined to the metal film, covering the metal film and the cured resin, and joined to an outer peripheral region of the substrate, at a periphery of the device region; and a second metal film on the back surface and connected to the first electrode through a via hole penetrating the substrate.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: October 13, 2015
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Youichi Nogami, Hidetoshi Koyama, Yoshitsugu Yamamoto
  • Patent number: 9153433
    Abstract: A disclosed method of depositing a silicon film on a substrate mounted on a turntable and can pass by rotation through a first process area and a second process area, which are separately arranged along a peripheral direction in a cylindrical chamber set to have a first temperature capable of cutting a Si—H bond includes a molecular layer deposition step of supplying a Si2H6 gas set to have a second temperature less than the first temperature when the substrate passes through the first process area thereby forming a SiH3 molecular layer on a surface of the substrate, and a hydrogen desorption step of causing the substrate, on a surface of which the SiH3 molecular layer is formed, to pass through the second process area maintained to have the first temperature thereby cutting the Si—H bond and leaving only a silicon atomic layer on the surface of the substrate.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: October 6, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Hitoshi Kato, Keiichi Tanaka, Hiroyuki Kikuchi
  • Patent number: 9136235
    Abstract: Methods and apparatuses for wafer level packaging (WLP) semiconductor devices are disclosed. A redistribution layer (RDL) is formed on a first passivation layer in contact with a conductive pad over a surface of a die. The RDL layer is on top of a first region of the first passivation layer. A second passivation layer is formed on the RDL layer with an opening to expose the RDL layer, and over the first passivation layer. An under bump metallization (UBM) layer is formed over the second passivation layer in contact with the exposed RDL layer. A second region of the first passivation layer disjoint from the first region is determined by projecting an outer periphery of a solder ball or other connector onto the surface.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: September 15, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Wei Tu, Yian-Liang Kuo, Tsung-Fu Tsai, Ru-Ying Huang, Ming-Song Sheu, Hsien-Wei Chen
  • Patent number: 9111829
    Abstract: An image sensor pixel array includes a photoelectric conversion unit comprising a photoelectron accumulation region of n-type in a substrate of p-type and vertically below a gate electrode of a transistor. A light guide transmits a light of red or green or yellow color across the gate electrode to the photoelectron accumulation region. The gate electrode may be made thinner by a wet etch. An etchant for thinning the gate electrode may be introduced through an opening in an insulating film on the substrate. The light guide may be formed in the opening after the thinning. An anti-reflection stack may be formed at a bottom of the opening prior to forming the light guide.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: August 18, 2015
    Inventor: Hiok Nam Tay
  • Patent number: 9112004
    Abstract: A copper interconnect includes a copper layer formed in a dielectric layer. A glue layer is formed between the copper layer and the dielectric layer. A barrier layer is formed at the boundary between the glue layer and the dielectric layer. The barrier layer is a metal oxide.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: August 18, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Kuang Kao, Huei-Wen Yang, Yung-Sheng Huang, Yu-Wen Lin
  • Patent number: 9105469
    Abstract: A method and a semiconductor device for incorporating defect mitigation structures are provided. The semiconductor device comprises a substrate, a defect mitigation structure comprising a combination of layers of doped or undoped group IV alloys and metal or non-metal nitrides disposed over the substrate, and a device active layer disposed over the defect mitigation structure. The defect mitigation structure is fabricated by depositing one or more defect mitigation layers comprising a substrate nucleation layer disposed over the substrate, a substrate intermediate layer disposed over the substrate nucleation layer, a substrate top layer disposed over the substrate intermediate layer, a device nucleation layer disposed over the substrate top layer, a device intermediate layer disposed over the device nucleation layer, and a device top layer disposed over the device intermediate layer.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 11, 2015
    Assignee: Piquant Research LLC
    Inventors: Zubin P. Patel, Tracy Helen Fung, Jinsong Tang, Wai Lo, Arun Ramamoorthy
  • Patent number: 9105484
    Abstract: An epitaxial structure includes a patterned epitaxial growth surface defining a plurality of grooves. A graphene layer covers the patterned epitaxial growth surface. An epitaxial layer is formed on the patterned epitaxial growth surface, wherein a first part of the graphene layer is sandwiched between the substrate, and a second part of the graphene layer is embedded into the epitaxial layer.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: August 11, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 9099307
    Abstract: A method for making an epitaxial structure includes following steps. A substrate having an epitaxial growth surface is provided. A first epitaxial layer is epitaxially grown on the epitaxial growth surface. A graphene layer is applied on the first epitaxial layer. A second epitaxial layer is epitaxially grown on the first epitaxial layer.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: August 4, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 9082861
    Abstract: A highly reliable semiconductor device is provided. Over an oxide semiconductor layer in which a channel is formed, an insulating layer including the oxide semiconductor material having a higher insulating property than an oxide semiconductor layer is formed. A material which contains an element M and is represented by a chemical formula InMZnOX (X>0) or an oxide material which contains an element M1 and an element M2 and is represented by a chemical formula InM1XM2(1?X)ZnO (0<X<1+? where ? is less than 0.3 and (1?X)>0) is used as the oxide semiconductor material having a high insulating property. Ti, Zr, Hf, Ge, Ce, or Y is used as the element M and the element M2, for example. Ga is used as the element M1, for example.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: July 14, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 9070749
    Abstract: A method of forming a fluorine-free tungsten diffusion barrier layer having a reduced resistivity, and a semiconductor device, and method for forming such semiconductor device, using the fluorine-free tungsten diffusion barrier layer.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: June 30, 2015
    Assignee: SK Hynix Inc.
    Inventor: Dong-Kyun Kang
  • Patent number: 9070576
    Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary method of fabricating a semiconductor device on a doped region of semiconductor material having a first conductivity type involves forming a first region having a second conductivity type within the doped region, forming a body region having the first conductivity type overlying the first region, and forming a drift region having the second conductivity type within the doped region, wherein at least a portion of the drift region abuts at least a portion of the first region. In one embodiment, the dopant concentration of the first region is less than the dopant concentration of the body region and different from the dopant concentration of the drift region.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 30, 2015
    Assignee: FREESCALE SEMICONDUCTOR INC.
    Inventors: Hongning Yang, Zhihong Zhang, Jiang-Kai Zuo
  • Patent number: 9059035
    Abstract: A nonvolatile semiconductor memory device a first memory cell array layer, a first insulation layer formed on top of the first memory cell array layer, a second memory cell array layer formed on the first insulation layer, and a control gate. The first and second memory cell array layers have first and second NAND cell units provided with multiple first and second memory cells connected in series in a first direction and the first and second selection gates connected at both ends of the multiple first and second memory cells. The control gate is formed via an insulation layer between gates of the memory cells on both sides thereof in the first direction, and extends in the second direction perpendicular to the first direction.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: June 16, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Satoshi Nagashima, Fumitaka Arai, Hisataka Meguro
  • Patent number: 9059274
    Abstract: A self-aligned carbon nanostructure transistor is formed by a method that includes providing a material stack including a gate dielectric material having a dielectric constant of greater than silicon oxide and a sacrificial gate material. Next, a carbon nanostructure is formed on an exposed surface of the gate dielectric material. After forming the carbon nanostructure, metal semiconductor alloy portions are formed self-aligned to the material stack. The sacrificial gate material is then replaced with a conductive metal.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: June 16, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qing Cao, Zhengwen Li, Fei Liu, Zhen Zhang
  • Patent number: 9054166
    Abstract: Keep out zones (KOZ) are formed for a through silicon via (TSV). A device can be placed outside a first KOZ of a TSV determined by a first performance threshold so that a stress impact caused by the TSV to the device is less than a first performance threshold while the first KOZ contains only those points at which a stress impact caused by the TSV is larger than or equal to the first performance threshold. A second KOZ for the TSV can be similarly formed by a second performance threshold. A plurality of TSVs can be placed in a direction that the KOZ of the TSV has smallest radius to a center of the TSV, which may be in a crystal orientation [010] or [100]. A plurality of TSV stress plug can be formed at the boundary of the overall KOZ of the plurality of TSVs.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: June 9, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Chieh Hsieh, Hung-An Teng, Shang-Yun Hou, Shin-Puu Jeng
  • Patent number: 9048313
    Abstract: A semiconductor device includes a semiconductor substrate and a plurality of gate electrodes including a part extended in a first direction in a plane parallel with the semiconductor substrate. The semiconductor substrate has a second semiconductor layer including a plurality of first conductive type pillars and second conductive type second pillars that are disposed on the first semiconductor layer, extending in the first direction in the plane parallel with the semiconductor substrate and in a third direction intersecting with a second direction orthogonal to the first direction, and arranged adjacent to each other in an alternate manner.
    Type: Grant
    Filed: September 8, 2012
    Date of Patent: June 2, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Syotaro Ono, Wataru Saito, Toshiyuki Naka, Shunji Taniuchi, Hiroaki Yamashita
  • Patent number: 9023737
    Abstract: A method for forming a conformal, homogeneous dielectric film includes: forming a conformal dielectric film in trenches and/or holes of a substrate by cyclic deposition using a gas containing a silicon and a carbon, nitrogen, halogen, hydrogen, and/or oxygen, in the absence of a porogen gas; and heat-treating the conformal dielectric film and continuing the heat-treatment beyond a point where substantially all unwanted carbons are removed from the film and further continuing the heat-treatment to render substantially homogeneous film properties of a portion of the film deposited on side walls of the trenches and/or holes and a portion of the film deposited on top and bottom surfaces of the trenches and/or holes.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: May 5, 2015
    Assignee: ASM IP Holding B.V.
    Inventors: Julien Beynet, Ivo Raaijmakers, Atsuki Fukazawa
  • Patent number: 9018759
    Abstract: A semiconductor package substrate including a substrate body having a front surface configured for mounting a semiconductor chip on the front surface and a rear surface facing the front surface and comprising a window passing through the front and rear surfaces, the window having one or more surfaces inclined from the front surface toward the rear surface; and a conductive pattern arranged along an inclined surface of the window so as to extend from the front surface to the rear surface of the substrate body.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: April 28, 2015
    Assignee: SK Hynix Inc.
    Inventor: Jong Hoon Kim