Patents Examined by Stephani Hill
  • Patent number: 11377720
    Abstract: Nickel based alloys capable of forming bulk metallic glass are provided. The alloys include Ni—Cr—Si—B compositions, with additions of P and Mo, and are capable of forming a metallic glass rod having a diameter of at least 1 mm. In one example of the present disclosure, the Ni—Cr—Mo—Si—B—P composition includes about 4.5 to 5 atomic percent of Cr, about 0.5 to 1 atomic percent of Mo, about 5.75 atomic percent of Si, about 11.75 atomic percent of B, about 5 atomic percent of P, and the balance is Ni, and wherein the critical metallic glass rod diameter is between 2.5 and 3 mm and the notch toughness between 55 and 65 MPa m1/2.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: July 5, 2022
    Assignee: Glassimetal Technology Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Glenn Garrett, Marios D. Demetriou, William L. Johnson
  • Patent number: 11378147
    Abstract: A spring consists of, by mass %, 0.5 to 0.7% of C, 1.0 to 2.0% of Si, 0.1 to 1.0% of Mn, 0.1 to 1.0% of Cr, not more than 0.035% of P, not more than 0.035% of S, and the balance of Fe and inevitable impurities. The spring has a structure including not less than 65% of bainite and 4 to 13% of residual austenite by area ratio in a cross section. The spring has a compressive residual stress layer in a cross section from a surface to a depth of 0.35 mm to D/4, in which D (mm) is a circle-equivalent diameter of the cross section. The spring has a high hardness layer with greater hardness than a center portion by 50 to 500 HV from a surface to a depth of 0.05 to 0.3 mm.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: July 5, 2022
    Assignee: NHK SPRING CO., LTD.
    Inventors: Takeshi Suzuki, Yoshiki Ono, Shimpei Kurokawa, Kosuke Shibairi
  • Patent number: 11344941
    Abstract: In a method for obtaining a hot-press-formed steel member, a steel sheet containing 0.10-0.30 mass % of C, 1.0-2.5 mass % of Si, 1.0-3.0 mass % of Si and Al in total, and 1.5-3.0 mass % of Mn is heated at a heating temperature of not less than the Ac3 transformation point. The steel sheet is hot-press formed for one or more times. The starting temperature of the hot pressing is not more than the heating temperature but not less than the Ms point. The average cooling rate from (Ms point?150)° C. to 40° C. is 5° C./s or less. The hot-press-formed steel member has high strength, high tensile elongation, high bendability, excellent deformation characteristics at the time of collision crush, and excellent delayed fracture resistance.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: May 31, 2022
    Assignee: Kobe Steel, Ltd.
    Inventors: Takayuki Yamano, Jiro Iwaya, Noriyuki Jimbo, Tatsuya Asai, Naoki Mizuta
  • Patent number: 11242576
    Abstract: An optimized Gamma-prime (??) strengthened austenitic transformation induced plasticity (TRIP) steel comprises a composition designed and processed such that the optimized ?? strengthened austenitic TRIP steel meets property objectives comprising a yield strength of 896 MPa (130 ksi), and an austenite stability designed to have Ms?(sh)=?40° C., wherein Ms?(sh) is a temperature for shear, and wherein the property objectives are design specifications of the optimized ?? strengthened austenitic TRIP steel. The optimized ?? strengthened austenitic TRIP steel is Blastalloy TRIP 130.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: February 8, 2022
    Assignee: NORTHWESTERN UNIVERSITY
    Inventors: Nicholas J. Wengrenovich, Gregory B. Olson
  • Patent number: 11198930
    Abstract: There is provided a precipitation-strengthened stainless steel plate having a chemical composition: by mass %, C: 0.01 to 0.10%; Si: 0.02 to 3.0%; Mn: 0.02 to 2.0%; Ni: 20 to 30%, Cr: 14 to 25.0%; Mo: 1.0 to 4.0%; Cu: 0.01 to 2.0%; Co: 0.01 to 0.5%; V: 0.1 to 1.0%; B: 0.001 to 0.01%; N: 0.02% or less; Ti: 2.0 to 5.0%; Al: 0.002 to 5.0%; Ti+Al: 3.3 to 6.0%; and the balance being Fe and impurities, the precipitation-strengthened stainless steel plate having a Vickers hardness Hv of 300 or higher, wherein the number density ??: Ni3(Al, Ti), which is an intermetallic compound, is 0 to 5/?m2. As a heat resistant component material, the precipitation-strengthened stainless steel plate is less expensive than conventional Ni-based alloys such as NCF625 and NCF718, and more excellent in high temperature properties than a precipitation-strengthened heat-resistant stainless steel such as SUH660.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: December 14, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Masayoshi Sawada, Yuichi Fukumura
  • Patent number: 11198179
    Abstract: A plasma atomization metal powder manufacturing process includes providing a heated metal source and contacting the heated metal source with the plasma of at least one plasma source under conditions effective for causing atomization of the heated metal source. The atomization may be carried out using a gas to metal ratio of less than about 20, thereby obtaining a raw metal powder having a 0-106 ?m particle size distribution yield of at least 80%. The process may further include aligning the heated metal source with the plasma of at least one plasma source. An atomizing system may include an alignment system positioned upstream of the plasma source and adapted to adjust an orientation of the metal source relative to the at least one plasma source.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: December 14, 2021
    Assignee: AP&C ADVANCED POWDERS & COATING INC.
    Inventors: Frédéric Larouche, Matthieu Balmayer, Francis Trudeau-Lalonde
  • Patent number: 11195628
    Abstract: A method of manufacturing a zirconium alloy for a nuclear fuel cladding tube includes melting a mixture of 0.5 wt % of Nb, 0.4 wt % of Mo, 0.1 to 0.15 wt % of Cu, 0.15 to 0.2 wt % of Fe, and a balance of zirconium to prepare a melted ingot; heat treating the melted ingot at 1,000 to 1,050° C. for 30 to 40 min. followed by quenching in water to prepare a heat-treated ingot; preheating the heat-treated ingot at 630 to 650° C. for 20 to 30 min. to prepare a preheated ingot followed by hot rolling the preheated ingot at a reduction ratio of 60 to 65% to provide a hot-rolled material; thrice performing vacuum annealing followed by cold-rolling; and vacuum annealing a third cold-rolled material in a final vacuum annealing at 510 to 520° C. for 7 to 9 hrs. to provide the zirconium alloy as a cold-rolled material.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: December 7, 2021
    Assignee: KEPCO NUCLEAR FUEL CO., LTD.
    Inventors: Min Young Choi, Yong Kyoon Mok, Yoon Ho Kim, Yeon Soo Na, Chung Yong Lee, Hun Jang, Tae Sik Jung, Dae Gyun Go, Sung Yong Lee, Seung Jae Lee, Jae Ik Kim
  • Patent number: 11168381
    Abstract: A process for upgrading waste powders of the mining industry containing iron oxides is described, which includes preparing a mixture containing powder based on iron oxides, an aqueous dispersion of a thermosetting resin and optionally carbon powder, and a catalyst of acidic nature; kneading the mixture at a temperature between 5 and 100° C. to form a homogeneous paste, and granulating such homogeneous paste at a temperature between 100 and 300° C., thus obtaining granules of powder based on iron oxides and optionally carbon powder bound by the resin that has been polymerized.
    Type: Grant
    Filed: October 16, 2014
    Date of Patent: November 9, 2021
    Assignee: Ambiente E Nutrizione S.R.L.
    Inventor: Giuseppina Cerea
  • Patent number: 11154931
    Abstract: A manufacturing method for a three-dimensional formed object for manufacturing the three-dimensional formed object by stacking layers includes supplying a first forming material of the three-dimensional formed object to a contour region of the three-dimensional formed object in the layers, applying energy to the first forming material supplied to the contour region to solidify the first forming material, supplying a second forming material to a region corresponding to the three-dimensional formed object, the region being a contact region in contact with the contour region, and applying energy to the second forming material supplied to the contact region to solidify the second forming material.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: October 26, 2021
    Assignee: Seiko Epson Corporation
    Inventors: Masaya Ishida, Hajime Onishi, Eiji Okamoto, Kentaro Yamada
  • Patent number: 11152142
    Abstract: An R-T-B based permanent magnet excellent in magnetic properties relatively reduces the amount of a heavy rare earth element used. An R-T-B based permanent magnet, wherein R represents a rare earth element, T an iron group element and B boron, includes main phase grains including an R2T14B crystal phase and grain boundaries formed between main phase grains. Grain boundaries include R—O—C—N concentrated parts where concentrations of R, O, C and N are all higher than those in main phase grains. C/R(S)>C/R(C) is satisfied in which C/R(S) represents a C/R ratio (atomic ratio) in R—O—C—N concentrated parts present in a surface of a R-T-B based permanent magnet and C/R(C) represents a C/R ratio (atomic ratio) in the R—O—C—N concentrated parts present in the center of a R-T-B based permanent magnet, and a heavy rare earth element RH is included in the R-T-B based permanent magnet.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: October 19, 2021
    Assignee: TDK CORPORATION
    Inventors: Yuki Nagamine, Masashi Miwa, Yoshinori Fujikawa
  • Patent number: 11136641
    Abstract: High-strength galvannealed steel sheet including any of a) an oxide containing Fe and Mn, b) an oxide containing Fe and Mn and an Fe oxide, c) an oxide containing Fe and Mn and a Mn oxide, d) an oxide containing Fe and Mn, an Fe oxide, and a Mn oxide, and e) an Fe oxide and a Mn oxide is present in a zinc coated layer. The total amount of oxide is 0.01 to 0.100 g/m2; the ratio by mass % of Mn to Fe, e.g., Mn/Fe, contained in the oxide is 0.10 to 10.00; an oxide of at least one selected from Fe and Mn is present in an amount of 60% or more; and an oxide of at least one selected from Fe and Mn is present in a surface layer portion of a steel sheet in an amount of 0.040 g/m2 or less (not including zero).
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: October 5, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Satoshi Maeda, Yoichi Makimizu, Yoshitsugu Suzuki, Katsumi Yamada, Yoshiyasu Kawasaki
  • Patent number: 11114227
    Abstract: A non-oriented electrical steel sheet has low iron loss even under inverter excitation and can be suitably used as the iron core of a motor. The non-oriented electrical steel sheet has a specific chemical composition and an average grain size r of 40 ?m to 120 ?m. An area ratio R of a total area of grains having a grain size of ? or less of the thickness of the steel sheet to a cross-sectional area of the steel sheet is 2% or greater, and the average grain size r (?m) and the area ratio R (%) satisfy a condition represented by Expression (1), R>?2.4×r+200 (1).
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 7, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Masanori Uesaka, Kunihiro Senda, Takeshi Omura
  • Patent number: 11035014
    Abstract: A method for desulfurizing molten steel comprising taking a sample out from molten steel after tapping from a converter or during secondary refining and analyzing the sample rapidly with high accuracy by a method comprising a high frequency induction heating step wherein the sample is combusted and oxidized under the high frequency induction heating in an oxygen atmosphere having an oxygen purity of 99.5 vol % or more to convert S in the sample into SO2 and an analyzing step wherein SO2-containing gas produced in the high frequency induction heating step is analyzed through an ultraviolet fluorescence method to quantify S concentration of the sample.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: June 15, 2021
    Assignee: JFE STEEL CORPORATION
    Inventors: Satoshi Kinoshiro, Toshiyuki Ito, Ryo Kawabata, Toshiro Ishige, Kyoko Fujimoto, Masao Inose
  • Patent number: 11028464
    Abstract: The present invention provides a lead-free easy-to-cut corrosion-resistant brass alloy with good thermoforming performance. The brass alloy contains: 74.5-76.5 wt % of Cu, 3.0-3.5 wt % of Si, 0.11-0.2 wt % of Fe, 0.04-0.10% wt % of P, Zn and inevitable impurities. The alloy provided by the present invention has good cold-working and hot-working forming performance, and good dezincification corrosion-resistant and stress corrosion-resistant performance, applies to parts that require cutting and grinding forming in water-heating sanitaryware, electronic appliances, automobiles and the like, and especially applies to production and assembling of complex forging products for which stress is inconvenient to eliminate, such as water taps, values and the like.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: June 8, 2021
    Assignee: XIAMEN LOTA INTERNATIONAL CO., LTD.
    Inventors: Chuankai Xu, Zhenqing Hu, Nianrun Zhou, Siqi Zhang, Jia Long, Huawei Zhang
  • Patent number: 10968501
    Abstract: The invention concerns a process to manufacture a flat-rolled product, notably for the aeronautic industry containing aluminum alloy, in which, notably a flattening and/or stretching is performed with a cumulated deformation of at least 0.5% and less than 3% and a short heat-treatment is performed in which the sheet reaches a temperature between 130° C. and 170° C. for a period of 0.1 to 13 hours. The invention notably makes it possible to simplify the forming process of fuselage skins and to improve the balance between static mechanical strength properties and damage tolerance properties.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: April 6, 2021
    Assignee: CONSTELLIUM FRANCE
    Inventors: Frank Eberl, Bernard Bes
  • Patent number: 10910782
    Abstract: A method for bonding a first surface provided with at least one copper area surrounded by a silicon oxide area to a second surface includes an operation of treatment of the first surface by a plasma, before placing the first surface in contact with the second surface. The plasma is formed from a gas source containing a silicon oxide nitriding agent and a copper oxide reducing agent containing hydrogen. The gas source may include an N2 and NH3 and/or H2 gas mixture or a N2O and H2 gas mixture, or ammonia, which is then used both as a nitriding agent and as a reducing agent. The plasma obtained from this gas source then necessarily contains nitrogen and hydrogen, which enables, in a single operation, to provide a high-performance bonding between the first and second surfaces.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: February 2, 2021
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Laurent Vandroux, Léa Di Cioccio, Pierric Gueguen
  • Patent number: 10894999
    Abstract: In a process for producing uranium and/or at least one rare earth element selected from the group consisting of cerium, dysprosium, erbium, europium, gadolinium, holmium, lanthanum, lutetium, neodymium, praseodymium, promethium, samarium, scandium, terbium, thulium, ytterbium and yttrium out of an ore, the ore is mixed with sulphuric acid with a concentration of at least 95 wt.-% to a mixture, wherein the mixture is granulated to pellets. The pellets are fed into at least one fluidized bed fluidized by a fluidizing gas for a thermal treatment at temperatures between 200 and 1000° C. The at least one fluidized bed is developed such that it at least partly surrounds a gas supply tube for a gas or a gas mixture fed into the reactor and the gas or gas mixture is used as a heat transfer medium.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: January 19, 2021
    Assignee: OUTOTEC (FINLAND) OY
    Inventors: Maciej Wrobel, Jochen Güntner, Alexandros Charitos, Jörg Hammerschmidt
  • Patent number: 10876193
    Abstract: Methods for making a material superwicking and/or superwetting (superhydrophyllic) involving creating one or more indentations in the surface of the material that have a micro-rough surface of protrusions, cavities, spheres, rods, or other irregularly shaped features having heights and/or widths on the order of 0.5 to 100 microns and the micro-rough surface having a nano-rough surface of protrusions, cavities, spheres, rods, and other irregularly shaped features having heights and/or widths on the order of 1 to 500 nanometers. Superwicking and/or superwetting materials having micro-rough and nano-rough surface indentations, including metals, glass, enamel, polymers, semiconductors, and others.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: December 29, 2020
    Assignee: UNIVERSITY OF ROCHESTER
    Inventors: Chunlei Guo, Anatoliy Y. Vorobyev
  • Patent number: 10828698
    Abstract: In additive manufacturing, a composite build material filament and a release material filament are dropped from respective spools to a print head. Each of the composite build material filament and the release material filament includes a metal or ceramic powder plus a binder. On the spools and over the drop height, the filaments are heated to a temperature that flexes the filaments but does not soften them to a breaking point. The drop height is of similar linear scale to the build plate. The materials are debound and sintered.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: November 10, 2020
    Assignee: MARKFORGED, INC.
    Inventor: Gregory Thomas Mark
  • Patent number: 10793940
    Abstract: A flux composition for treating a metal surface prior to batch hot galvanizing in molten zinc-based alloys is disclosed. The flux composition can include (a) 40 to 70 wt. % zinc chloride, (b) 10 to 30 wt. % ammonium chloride, (c) 6 to 30 wt. % of a set of at least two alkali or alkaline earth metal halides, (d) from 0.1 to 2 wt. % lead chloride, and (e) from 2 to 15 wt. % tin chloride, provided that the combined amounts of lead chloride and tin chloride represent at least 2.5 wt. % of the composition. A fluxing bath having this flux composition dissolved in water for use in galvanizing processes, as well as, a method for continuous or batch-wise treatment of metal articles in order to produce a protective coating layer with a thickness ranging from 5 to 30 ?m is also disclosed.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: October 6, 2020
    Assignee: FONTAINE HOLDINGS NV
    Inventors: David Warichet, Julien Balduyck, Caroline Masquelier