Patents Examined by Stephani Hill
  • Patent number: 10378090
    Abstract: A steel material comprising, by mass%, C: greater than 0.05% to 0.2%, Mn: 1% to 3%, Si: greater than 0.5% to 1.8%, Al: 0.01% to 0.5%, N: 0.001% to 0.015%, Ti or a sum of V and Ti: greater than 0.1% to 0.25%, Ti: 0.001% or more, Cr: 0% to 0.25%, Mo: 0% to 0.35%, the balance: Fe and impurities, comprising a multi-phase structure having a ferrite main phase and a second phase containing one or more of bainite, martensite and austenite, wherein an average nanohardness of the second phase is less than 6.0 GPa, an average grain diameter of all crystal grains in the main phase and the second phase is 3 ?m or less, and a proportion of a length of small-angle grain boundaries where the misorientation is 2° to less than 15° in a length of all grain boundaries is 15% or more.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: August 13, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kaori Kawano, Masahito Tasaka, Yoshiaki Nakazawa, Yasuaki Tanaka, Toshiro Tomida
  • Patent number: 10378219
    Abstract: An anti-explosion flooring material is disclosed. The material is prepared by foaming modification and rust prevention treatment of an iron alloy material and other auxiliary materials having components in percentage by weight: 85% of iron, 8% of manganese, 6% of silicon, and the remainder carbon. Because a foaming agent and rare earth are added, the static conducting performance of the flooring material is improved.
    Type: Grant
    Filed: August 10, 2015
    Date of Patent: August 13, 2019
    Assignee: Beijing Jinwanke decorative Engineering Company Limited
    Inventors: Hongsheng Cao, Xinmin Wang
  • Patent number: 10351937
    Abstract: The present invention provides a high-strength steel sheet excellent in impact resistance. The high-strength steel sheet contains predetermined contents of C, Si, Mn, P, S, Al, Ti, N, and O, with the balance being iron and inevitable impurities, and has a steel sheet structure in which, in a ? thickness to ? thickness region across ¼ of a sheet thickness, 1 to 8% retained austenite is contained in volume fraction, an average aspect ratio of the retained austenite is 2.0 or less, an amount of solid-solution Mn in the retained austenite is 1.1 times an average amount of Mn or more, and TiN grains having a 0.5 ?m average grain diameter or less are contained, and a density of AlN grains with a 1 ?m grain diameter or more is 1.0 pieces/mm2 or less, wherein a maximum tensile strength is 900 MPa or more.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 16, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Hajime Hasegawa, Chisato Wakabayashi, Tsuyoshi Oki
  • Patent number: 10340080
    Abstract: The invention is directed to a method of manufacturing a green compact. The method includes a filling step of filling a compacting space with an insulated coated soft magnetic powder. The compacting space is defined by a die. The die has a through hole with which a part of the outer circumferential surface of the green compact is molded. The die also has a core rod with which another part of the outer circumferential surface of the green compact is molded, and a first punch disposed so as to cover one of opening portions of the through hole, the core rod being inserted and disposed in a space of the through hole. The method also includes a pressurizing step using the first punch and a second punch disposed so as to face the first punch. The method also includes a removing step.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: July 2, 2019
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC SINTERED ALLOY, LTD.
    Inventors: Masato Uozumi, Atsushi Sato, Kazushi Kusawake
  • Patent number: 10287644
    Abstract: A method for desulfurizing molten steel comprising taking a sample out from molten steel after tapping from a converter or during secondary refining and analyzing the sample rapidly with high accuracy by a method comprising a high frequency induction heating step wherein the sample is combusted and oxidized under the high frequency induction heating in an oxygen atmosphere having an oxygen purity of 99.5 vol % or more to convert S in the sample into SO2 and an analyzing step wherein SO2-containing gas produced in the high frequency induction heating step is analyzed through an ultraviolet fluorescence method to quantify S concentration of the sample.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: May 14, 2019
    Assignee: JFE STEEL CORPORATION
    Inventors: Satoshi Kinoshiro, Toshiyuki Ito, Ryo Kawabata, Toshiro Ishige, Kyoko Fujimoto, Masao Inose
  • Patent number: 10274257
    Abstract: The present invention is directed to a method for preparing a permanent magnet, and more specifically, to a method for preparing a high-performance sintered Nd—Fe—B permanent magnet, in order to solve the problems of increased brittleness or high cost present in the permanent magnet prepared by the existing process. A method for preparing a sintered Nd—Fe—B permanent magnet includes the step of ingredient calculation and raw material preparation including calculating ingredients and preparing raw materials according to the ingredient formula of the resultantly sintered Nd—Fe—B permanent magnet, and dividing the raw materials into a rare earth Fe—B compound and rare earth metals.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: April 30, 2019
    Assignee: HANXI HENGLICHENG MAGNETIC INDUSTRY CO., LTD.
    Inventors: Jingfeng Wu, Jingshan Wu
  • Patent number: 10232437
    Abstract: A method of metallic part fabrication includes loose metal powder spread over an additive manufacturing build tank. A fluid binder/ceramic agent solution is selectively deposited upon a predetermined portion of the loose metal powder to create a printed layer. The printed layer is dried to remove a portion of the fluid binder/ceramic agent solution from the printed layer, to create a dried layer. A plurality of dried layers is stacked longitudinally to create a green part. The green part is bulk sintered to create a metallic part with uniformly dispersed and distributed ceramic particles in the metal matrix. A system for metallic part fabrication is also provided.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: March 19, 2019
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Parviz Yavari, Mahdi Yoozbashizadeh
  • Patent number: 10151019
    Abstract: A production method for a titanium alloy member includes preparing a titanium alloy material for sintering as a raw material of a sintered body; nitriding the titanium alloy material for sintering, thereby forming a nitrogen compound layer and/or a nitrogen solid solution layer in a surface layer of the titanium alloy material for sintering and yielding a nitrogen-containing titanium alloy material for sintering; mixing the titanium alloy material for sintering and the nitrogen-containing titanium alloy material for sintering, thereby yielding a titanium alloy material for sintering mixed with nitrogen-containing titanium alloy material; sintering the titanium alloy material for sintering mixed with nitrogen-containing titanium alloy material, thereby bonding the material each other and dispersing nitrogen contained in the nitrogen-containing titanium alloy material for sintering in a condition in which nitrogen is uniformly dispersed into an entire inner portion of the sintered body by solid solution.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: December 11, 2018
    Assignee: NHK SPRING CO., LTD.
    Inventors: Yuji Araoka, Tohru Shiraishi, Yoshiki Ono
  • Patent number: 10035078
    Abstract: A process for recovering metal from a process material comprising the metal and a component that is more volatile than the metal, which process comprises: transporting the process material in a retort provided in a furnace, the retort being operated under vacuum and at a temperature sufficient to cause sublimation of the component from the process material thereby producing purified metal; depositing the component that has been sublimed on a cool surface; removing purified metal from the retort; and removing deposited component from the cool surface.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: July 31, 2018
    Assignee: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventors: Andrew Chryss, Andreas Monch, Jasbir Khosa, Matthew Richards, David Freeman
  • Patent number: 9988700
    Abstract: The present invention provides a high-strength steel sheet excellent in shape fixability. The high-strength steel sheet contains C, Si, Mn, P, S, Al, N, and O with predetermined contents, in which a retained austenite phase of 5 to 20% in volume fraction is contained, an amount of solid-solution C contained in the retained austenite phase is 0.80 to 1.00% in mass %, WSi? is 1.10 times or more WSi*, WMn? is 1.10 times or more WMn*, and when a frequency distribution is measured with respect to a sum of a ratio between WSi and WSi* and a ratio between WAl and WAl*, a mode value of the frequency distribution is 1.95 to 2.05, and a kurtosis is 2.00 or more.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: June 5, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Akinobu Minami, Hiroyuki Kawata, Akinobu Murasato, Yuji Yamaguchi, Natsuko Sugiura, Takuya Kuwayama, Naoki Maruyama, Takamasa Suzuki
  • Patent number: 9950370
    Abstract: A method for manufacturing a part includes metal injection molding of metal powder mixed with a binder to produce individual components of the part as separately molded green compact sections which are then debindered to form brown compact sections. At least one of the brown compact sections is subjected to a pre-sintering process to undergo a first shrinkage. The pre-sintered brown compact section and a further brown compact section are joined together to form a multi-part brown compact which is subsequently subjected to a main sintering process, where the pre-sintered brown compact section undergoes less shrinkage than the further brown compact section to draw together and firmly connect the pre-sintered brown compact section and the further brown compact section.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: April 24, 2018
    Assignee: ROLLS-ROYCE DEUTSCHLAND LTD & CO KG
    Inventors: Dan Roth-Fagaraseanu, Lukas Schruefer
  • Patent number: 9666325
    Abstract: Disclosed is a beryllium-free copper alloy having high strength, high electric conductivity and good bending workability and a method of manufacturing the copper alloy. Provided is a copper alloy having a composition represented by the composition formula by atom %: Cu100-a-b-c(Zr, Hf)a(Cr, Ni, Mn, Ta)b(Ti, Al)c [wherein 2.5?a?4.0, 0.1<b?1.5 and 0?c?0.2; (Zr, Hf) means one or both of Zr and Hf; (Cr, Ni, Mn, Ta) means one or more of Cr, Ni, Mn and Ta; and (Ti, Al) means one or both of Ti and Al], and having Cu primary phases in which the mean secondary dendrite arm spacing is 2 ?m or less and eutectic matrices in which the lamellar spacing between a metastable Cu5(Zr, Hf) compound phase and a Cu phase is 0.2 ?m or less.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 30, 2017
    Assignee: TOHOKU UNIVERSITY
    Inventors: Akihisa Inoue, Nobuyuki Nishiyama, Haruko Yamazaki
  • Patent number: 9617952
    Abstract: To provide a price-competitive compression ring having excellent thermal conductivity and thermal sag resistance, which can be used in a high-thermal-load environment of high-compression-ratio engines, steel identified by the material number of SUP10 in JIS G 4801, which contains small amounts of alloying elements, is used, and a piston ring wire is annealed before an oil-tempering treatment such that spheroidal cementite having an average particle size of 0.1-1.5 ?m is dispersed in a tempered martensite matrix, thereby suppressing the movement of dislocation and creep even at 300° C., and improving thermal sag resistance.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: April 11, 2017
    Assignees: KABUSHIKI KAISHA RIKEN, TOKUSEN KOGYO CO., LTD.
    Inventors: Yuji Shima, Junya Takahashi, Ryouichi Kamon
  • Patent number: 9567657
    Abstract: An austenitic cast iron including basic elements of C, Si, Cr, Ni, Mn and Cu; and the balance including Fe, inevitable impurities and/or a trace-amount modifier element, which is effective in improving a characteristic of the cast iron, in a trace amount; and structured by a base comprising an Fe alloy in which an austenite phase makes a major phase in ordinary-temperature region; wherein the basic elements fall within compositional ranges that satisfy the following conditions when the entirety of the cast iron is taken as 100% by mass: C: from 2.0 to 3.0%; Si: from 4.0 to 5.4%; Cr: from 0.8 to 2.0%; Mn: from 3.9 to 5.6%; Ni: from 17 to 22%; and Cu: from 0.9 to 1.6%.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: February 14, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tomohei Sugiyama, Manabu Ishikawa, Mamoru Kojima, Kyoichi Kinoshita
  • Patent number: 9533353
    Abstract: The present invention is directed to metallurgical powder compositions having improved lubricant properties. These compositions of the invention include at least 90 wt. % of an iron-based metallurgical powder; a Group 1 or Group 2 metal stearate; a first wax having a melting range of between about 80 and 100° C.; a second wax having a melting range of between about 80 and 90° C.; zinc phosphate; boric acid; acetic acid; phosphoric acid; and a binder. Methods of compacting the compositions, as well as compacted articles prepared using those methods, are also described.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: January 3, 2017
    Assignee: Hoeganaes Corporation
    Inventors: Francis G. Hanejko, William Tambussi
  • Patent number: 9457404
    Abstract: A method for consolidating a pre-form made of powder, comprising: (a) placing the pre-form between smart susceptors; (b) heating the smart susceptors to a leveling temperature by applying a varying low-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors; (c) applying consolidation pressure to the pre-form at least during a time period subsequent to the temperature of the smart susceptors reaching the leveling temperature; and (d) while consolidation pressure is being applied, applying a pulsed high-strength magnetic field having a magnetic flux that passes through a surface of the pre-form. The strength and pulse rate of the high-strength magnetic field are selected so that the crystallographic phase of the pre-form will rapidly oscillate at a substantially constant temperature. The pulsed high-strength magnetic field is applied sufficiently long that superplasticity of the pre-form is attained during phase oscillation.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: October 4, 2016
    Assignee: The Boeing Company
    Inventors: Marc R. Matsen, Mark Alan Negley, Robert James Miller
  • Patent number: 9441286
    Abstract: An oil-impregnated sintered bearing which does not tend to produce squealing noises is provided. The oil-impregnated sintered bearing can be used as a bearing of an electric motor that may be intermittently used for a short time, such as a bearing of a window regulator motor. The oil-impregnated sintered bearing includes pores that include middle-sized pores with circle-equivalent diameters of 45 to 63 ?m at 0.9 to 2.5%, interparticle pores with circle-equivalent diameters of 63 to 75 ?m at 0.1 to 1.2%, and large interparticle pores with circle-equivalent diameters of larger than 75 ?m at not more than 3%, with respect to the total number of the pores.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 13, 2016
    Assignee: HITACHI POWDERED METALS CO., LTD.
    Inventors: Naoki Nishizawa, Hidekazu Tokushima, Takeshi Yanase