Patents Examined by T. N. Quach
  • Patent number: 7309906
    Abstract: Improved decoupling capacitor designs and layout schemes are provided that generate high effective capacitance and high area efficiency at higher frequencies than that of previously known decoupling capacitor designs. The improved decoupling capacitor designs utilize transistor gates with shorter channel lengths to reduce the total parasitic resistance of the channel, thereby providing higher effective capacitance at higher frequencies. To enable higher area efficiency of this decoupling capacitor design, excess contacts are replaced with polysilicon in a grid or waffle pattern.
    Type: Grant
    Filed: April 1, 2005
    Date of Patent: December 18, 2007
    Assignee: Altera Corporation
    Inventors: Jeffrey Tyhach, Bonnie I Wang, Yan Chong, Chiakang Sung
  • Patent number: 7307295
    Abstract: A system including an semiconductor chip with a hard-coded bit changeable in any single metal layer of the semiconductor chip has been presented. In one embodiment, the system includes a graphics chip and an input/output controller hub. The input/output controller hub includes an integrated circuit having a set of metal layers, a logic circuit, and a set of cells. The logic circuit has a plurality of input terminals and an output terminal to output the hard-coded bit, wherein a value of the hard-coded bit is changeable during fabrication in any single one of the metal layers. Further, each of the set of cells is on a distinct one of the metal layers, each cell having an output pin directly coupled to one of the input terminals of the logic circuit.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: December 11, 2007
    Assignee: Intel Corporation
    Inventor: Maurice Velandia
  • Patent number: 7301200
    Abstract: A trench type power MOSgated device has a plurality of spaced trenches lined with oxide and filled with conductive polysilicon. The tops of the polysilicon fillers are below the top silicon surface and are capped with a deposited oxide the top of which is flush with the top of the silicon. Source regions of short lateral extent extend into the trench walls to a depth below the top of the polysilicon. A trench termination is formed having an insulation oxide liner covered by a polysilicon layer, covered in turn by a deposited oxide.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: November 27, 2007
    Assignee: International Rectifier Corporation
    Inventors: Adam I Amali, Naresh Thapar
  • Patent number: 7301207
    Abstract: A semiconductor device has a silicon substrate, in which an active region is formed between two device isolation films and a gate is formed on the surface of the active region. The silicon substrate has a laterally etched portion in the active region below the surface of the active region on the side near the device isolation film. An insulating film is formed on the laterally etched portion of the silicon substrate. A conductive electrode is formed on the insulating film, through which an external voltage is applied to adjust a threshold voltage. The device isolation film is formed on the conductive electrode. None or some pockets of vacant cavity is present between the device isolation film and the conductive electrode.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: November 27, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yil Wook Kim, Jun Hee Cho, Sung Eon Park, Jin Hong Ahn, Sang Don Lee
  • Patent number: 7297995
    Abstract: An isolation region formed in a substrate and lined with a transparent metal layer. The isolation region provides isolation between adjacent active areas of an integrated circuit structure, for example the inventive region may provide isolation between pixels of a pixel array. Utilizing a transparent material maintains high quantum efficiency of the pixels as photons are not blocked from penetrating into the substrate. In one exemplary embodiment, a shallow trench isolation region is formed in a substrate, lined with an oxide or other dielectric, and an indium-tin-oxide shielding layer is formed over the oxide. The lined trench may then be filled with either the transparent metal material or a transparent insulating material.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: November 20, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 7298039
    Abstract: In order to provide a low-cost and high heat-radiating electronic circuit device featuring high compactness, little warpage, high air tightness, high moldability, high mass productivity, high reliability against thermal shocks, and high oil-proof reliability, a module structure made by packing a whole multi-layer circuit board which connects a semiconductor operating element, semiconductor memory elements, and passive elements thereon and part of a supporting material on which said multi-layer circuit board is placed into a single package by transfer-molding; wherein said multi-layer circuit board and said supporting material are bonded together with a compound metallic material made up from copper oxide and at least one metal selected from a set of gold, silver, and copper.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: November 20, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Nobutake Tsuyuno, Toshiaki Ishii, Toshiya Satoh, Mitsuhiro Masuda
  • Patent number: 7294543
    Abstract: A DRAM cell with a self-aligned gradient P-well and a method for forming the same. The DRAM cell includes (a) a semiconductor substrate; (b) an electrically conducting region including a first portion, a second portion, and a third portion; (c) a first doped semiconductor region wrapping around the first portion, but electrically insulated from the first portion by a capacitor dielectric layer; (d) a second doped semiconductor region wrapping around the second portion, but electrically insulated from the second portion by a collar dielectric layer. The second portion is on top of and electrically coupled to the first portion, and the third portion is on top of and electrically coupled to the second portion. The collar dielectric layer is in direct physical contact with the capacitor dielectric layer. When going away from the collar dielectric layer, a doping concentration of the second doped semiconductor region decreases.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: November 13, 2007
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Babar Ali Khan
  • Patent number: 7294876
    Abstract: An embodiment of the FeRAM includes a ferroelectric capacitor including a bottom electrode, a ferroelectric layer, and a top electrode. Strontium ruthenium oxide is formed between the bottom electrode and the ferroelectric layer and between the ferroelectric layer and the top electrode. A diffusion barrier layer including strontium ruthenium oxide and iridium is formed between the top electrode and a direct cell contact plug coupled to a plate line interconnecting top electrodes of ferroelectric capacitors. Thus, diffusion of nitrogen or metallic materials produced in subsequent processes is suppressed to prevent degradation of the ferroelectric layer.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: November 13, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-Jin Joo, Bon-Jae Koo, Jung-Hoon Park
  • Patent number: 7294899
    Abstract: A method of manufacturing a nanowire filament includes forming and fusing actions. In a forming action, close proximity conductors are formed. In another forming action, a junction oxide is formed between the close proximity conductors. In a fusing action, a nanowire filament is fused between the close proximity conductors, through the junction oxide. A circuit is also provided, having first and second close proximity conductors, and a nanowire filament fused between the close proximity conductors.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: November 13, 2007
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Neal W. Meyer, James E. Ellenson
  • Patent number: 7294872
    Abstract: PROBLEM To provide a high quality solid state image pickup device. SOLUTION Impurities are implanted into a semiconductor substrate to form vertical transfer channels for transferring electric charges in a first direction and to form a drain near each of the vertical transfer channels via a gate which forms a barrier. A first silicon oxide film, a silicon nitride film and a second silicon oxide film are deposited in this order from the bottom, on the surfaces of the vertical transfer channels, gates and drains. A first layer vertical transfer electrode is formed on the second silicon oxide film above the vertical transfer channel, and an insulating film if formed on the surface of the first layer vertical transfer electrode. The second silicon oxide film and silicon nitride film are etched in such a manner that the silicon nitride film covers the vertical transfer channel and extends above the gate excepting a portion near the drain.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: November 13, 2007
    Assignee: Fujifilm Corporation
    Inventor: Masanori Nagase
  • Patent number: 7285830
    Abstract: An improved lateral bipolar junction transistor and a method of forming such a lateral bipolar transistor without added mask in CMOS flow on a p-substrate are disclosed. The CMOS flow includes patterning and n-well implants; pattern and implant pocket implants for core nMOS and MOS; pattern and implants pocket implants I/O nMOS and pMOS; sidewall deposit and etch and then source/drain pattern and implant for nMOS and pMOS. The bipolar transistor is formed by forming emitter and collector contacts by implants used in source/drain regions; forming an emitter by implants done in core pMOS during core pMOS LDD extender; and forming part of an base by pocket implant steps.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: October 23, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Amitava Chatterjee
  • Patent number: 7282759
    Abstract: A memory device may include a plurality of resistance nodes. The resistance nodes may be connected serially in a NAND or AND structure, by a plurality of metal plugs. The metal plugs may have a lower resistance. A control device corresponding to each resistance node may control the resistance devices. Each control device may be connected to a bit line and a word line. The bit line may be connected to the metal plugs via a corresponding switch device.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: October 16, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-joo Kim, Yoon-dong Park
  • Patent number: 7282772
    Abstract: Disclosed are planar and non-planar field effect transistor (FET) structures and methods of forming the structures. The structures comprise segmented active devices (e.g., multiple semiconductor fins for a non-planar transistor or multiple semiconductor layer sections for a planar transistor) connected at opposite ends to source/drain bridges. A gate electrode is patterned on the segmented active devices between the source/drain bridges such that it has a reduced length between the segments (i.e., between the semiconductor fins or sections). Source/drain contacts land on the source/drain bridges such that they are opposite only those portions of the gate electrode with the reduced gate length. These FET structures can be configured to simultaneously maximize the density of the transistor, minimize leakage power and maintain the parasitic capacitance between the source/drain contacts and the gate conductor below a preset level, depending upon the performance and density requirements.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: October 16, 2007
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7282437
    Abstract: An insulating tube includes a underlying insulating film, a first sidewall insulating film disposed on the underlying insulating film, a second sidewall insulating film disposed on the underlying insulating film, opposite to the first sidewall insulating film so as to provide a cavity between the first and second sidewall insulating films having the same height as the first sidewall insulating film, and an upper insulating film provided over the first and second sidewall insulating films.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: October 16, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsuyoshi Matsumura, Takahito Nakajima, Hiroshi Kawamoto, Mikie Miyasato, Yoshihiro Uozumi
  • Patent number: 7279745
    Abstract: In a semiconductor device of the present invention, an N-type epitaxial layer 2 is deposited on a P-type substrate 1. In the epitaxial layer 2, a P-type diffusion layer 5 to be used as a back gate region is formed. An N-type diffusion layer 8 to be used as a drain region is formed so as to surround the P-type diffusion layer 5. The P-type diffusion layer 5 and the N-type diffusion layer 8 partially overlap with each other. By use of a structure described above, a distance between a drain and a source is shortened. Thus, an ON resistance value can be reduced. Moreover, since a concentration gradient can be generated in the drain region, withstand pressure characteristics can be maintained while reducing an element formation region.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: October 9, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Seiji Otake
  • Patent number: 7279391
    Abstract: Some embodiments of the present invention include integrated inductors and compliant interconnects for semiconductor packaging.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: October 9, 2007
    Assignee: Intel Corporation
    Inventors: Rockwell Hsu, Sriram Muthukumar, Jiangqi He
  • Patent number: 7276740
    Abstract: A submount for a light emitting device package is provided. The submount includes a substrate; a first bonding layer and a second bonding layer which are separately formed on the substrate; a first barrier layer and a second barrier layer which are formed on the first bonding layer and on the second bonding layer, respectively; a first solder and a second solder which are formed on the first barrier layer and on the second barrier layer, respectively; and a first blocking layer and a second blocking layer which are formed around the first barrier layer and the second barrier layer, blocking the melted first solder and the melted second solder from overflowing during a flip chip process.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: October 2, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-kun Kim, Su-hee Chae, Tae-hoon Jang
  • Patent number: 7271460
    Abstract: A solid-state image sensing device is provided which saves the effort of removing adhesives from a cover glass and is capable of reading an image without being affected by adhesive residuals. In a solid-state image sensing device, defacement of a cover glass upon the transport, etc. is prevented by having a protective film adhere to the surface of the cover glass. The adhesion section between the cover glass and the protective film is provided so as to keep clear of the front face of a light-receiving section. Therefore, after the protective film is detached, even without conventional surface processing like cleaning the cover glass, the light received by the light-receiving section entering through the cover glass is not adversely affected by residual adhesives.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: September 18, 2007
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventors: Hideaki Nagasaka, Yoshinori Osakabe
  • Patent number: 7271019
    Abstract: Disclosed are a semiconductor device and method of manufacturing the same comprising a substrate, a mesa region adjacent to the substrate, an electroplated metal layer, for reducing the thermal resistance of the device, surrounding the mesa region, an insulator layer separating a side portion of the mesa region from the electroplated metal layer, a heat sink, a bonding layer adjacent to the heat sink, and a second metal layer in between the substrate and the heat sink, wherein the substrate is adjacent to the bonding layer, and wherein the electroplated metal layer dimensioned and configured to have a thickness of at least half a thickness of the mesa region; and to laterally spread heat away from the mesa region. The mesa region comprises a first cladding layer adjacent to the substrate, an active region adjacent the first cladding layer, and a second cladding layer adjacent to the active region.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: September 18, 2007
    Assignee: United States of America as represented by the Secretary of the Army
    Inventors: John T. Pham, John D. Bruno, Richard L. Tober
  • Patent number: 7253473
    Abstract: A semiconductor device includes: a semiconductor substrate of the first-type; a semiconductor region of the first-type formed on the substrate; a gate electrode a part of which is present within a trench selectively formed in part of the semiconductor region, and an extended top-end to have a wide width via a stepped-portion; a gate insulating-film formed between the trench and the gate electrode along a wall surface of the trench; a base layer of the second-type on the region via the film to enclose a side-wall except a bottom of the trench; a source region of the first-type adjacent to the film outside the trench in the vicinity of a top surface of the base layer; and an insulating-film formed partially between a bottom-surface of the top-end and a top-surface of the source region and formed to have a thickness larger than that of the gate insulating-film within the trench.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: August 7, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kazutoshi Nakamura, Syotaro Ono