Patents Examined by Walter H Swanson
  • Patent number: 11164846
    Abstract: A semiconductor device manufacturing method includes: applying solder to an arrangement area of a substrate, the substrate having a connection area to which a wiring member is to be directly connected, the connection area neighboring the arrangement area; arranging a component on the arrangement area via the solder; and soldering the component to the arrangement area by heating the solder while covering the connection area. A soldering support jig includes a columnar covering member having a covering surface at a bottom of the columnar covering member.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: November 2, 2021
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Rikihiro Maruyama, Kenshi Kai, Kazuya Adachi
  • Patent number: 11152279
    Abstract: A Monolithic Integrated Circuit (MMIC) cooling structure having a heat spreader thermally comprising a anisotropic material, such material having anisotropic heat conducting properties for conducing heat therethrough along a preferred plane, a surface of the MMIC being thermally coupled to the heat spreader, the preferred plane intersecting the surface of the MMIC; and, a thermally conductive base having a side portion thermally coupled to the heat spreader, the side portion being disposed in a plane intersecting the preferred plane.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: October 19, 2021
    Assignee: RAYTHEON COMPANY
    Inventors: Susan C. Trulli, Anurag Gupta
  • Patent number: 11145780
    Abstract: A semiconductor substrate doped with a first doping type is positioned adjacent an insulated gate electrode that is biased by a gate voltage. A first region within the semiconductor substrate is doped with the first doping type and biased with a bias voltage. A second region within the semiconductor substrate is doped with a second doping type that is opposite the first doping type. Voltage application produces an electrostatic field within the semiconductor substrate causing the formation of a fully depleted region within the semiconductor substrate. The fully depleted region responds to absorption of a photon with an avalanche multiplication that produces charges that are collected at the first and second regions.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: October 12, 2021
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: Francois Roy
  • Patent number: 11133394
    Abstract: A method for manufacturing a semiconductor device includes forming a semiconductor strip over a substrate. The semiconductor strip includes a first semiconductor stack and a second semiconductor stack over the first semiconductor stack. A dummy gate stack is formed to cross the semiconductor strip. The dummy gate stack is replaced with a first metal gate stack and a second metal gate stack. The first metal gate stack is in contact with the first semiconductor layer of the first semiconductor stack and the second metal gate stack is in contact with the first semiconductor layer of the second semiconductor stack.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: September 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Hao Wu, Zhi-Chang Lin, Ting-Hung Hsu, Kuan-Lun Cheng
  • Patent number: 11133365
    Abstract: An AMOLED doubled-sided display includes an OLED array layer that includes a plurality of top-emitting OLED units and a plurality of bottom-emitting OLED units arranged alternate with each other to form an array. Each of the top-emitting OLD units and the bottom-emitting OLED units has different thickness for respective anodes and cathodes, to realize the top-emitting characteristics of the top-emitting OLED units and the bottom-emitting characteristics of the bottom-emitting OLED units. As such, by designing an algorithm for a single IC to control image displaying, only a display panel and a control IC are sufficient to achieve double-sided displaying, and ensure an observer standing in front of the display panel will not see mirrored image or directional distorted image, as well as achieve low-cost and quality display result.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: September 28, 2021
    Assignee: WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Shijuan Yi, Shuang Li
  • Patent number: 11127750
    Abstract: According to one embodiment, a semiconductor memory device includes a first conductive layer, a first semiconductor body, a second semiconductor body, a first memory layer, and a second memory layer. The first conductive layer includes first to fourth extension regions, and a first connection region. The first extension region extends in a first direction. The second extension region extends in the first direction and is arranged with the first extension region in the first direction. The third extension region extends in the first direction and is arranged with the first extension region in a second direction crossing the first direction. The fourth extension region extends in the first direction, is arranged with the third extension region in the first direction, and is arranged with the second extension region in the second direction.
    Type: Grant
    Filed: December 31, 2019
    Date of Patent: September 21, 2021
    Assignee: Toshiba Memory Corporation
    Inventors: Takuya Inatsuka, Tadashi Iguchi, Murato Kawai, Hisashi Kato, Megumi Ishiduki
  • Patent number: 11121240
    Abstract: In a semiconductor device using, as a FWD, a diode formed in a silicon carbide (SiC) substrate, while preventing gate oscillation, an increase of switching loss is suppressed at the time of a temperature increase also. A semiconductor device includes: a transistor element; a diode element formed in a SiC substrate; and a resistive element that is electrically connected to a gate of the transistor element, and has a resistor temperature coefficient which is within the range of ±150×10?6/K. The resistive element has a resistor formed of a ceramic-containing material.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: September 14, 2021
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Kunio Kobayashi
  • Patent number: 11107772
    Abstract: A semiconductor package includes an encapsulated semiconductor device, a backside redistribution structure, and a front side redistribution structure. The encapsulated semiconductor device includes an encapsulating material and a semiconductor device encapsulated by the encapsulating material. The backside redistribution structure is disposed on a backside of the encapsulated semiconductor device and includes a redistribution circuit layer and a first patterned dielectric layer. The redistribution circuit layer has a circuit pattern and a dummy pattern electrically insulated from the circuit pattern. The dummy pattern is overlapped with the semiconductor device from a top view of the semiconductor package. The first patterned dielectric layer is disposed on the redistribution circuit layer and includes a marking pattern disposed on the dummy pattern and revealing a part of the dummy pattern.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: August 31, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Hsien Chiang, Hsien-Ming Tu, Hao-Yi Tsai, Tin-Hao Kuo
  • Patent number: 11081671
    Abstract: The present disclosure discloses an OLED encapsulation structure, a display device and a method for manufacturing an OLED encapsulation structure. The OLED encapsulation structure includes an OLED device and a plurality of film layers covering the OLED device. The plurality of film layers includes an inorganic layer and an organic layer stacked alternately, and contacting surfaces of any two film layers in contact with each other among the plurality of film layers include complementary topographies such that the any two film layers in contact with each other are stuck with each other.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: August 3, 2021
    Assignees: CHENGDU BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Guolin Zhang, Jiuyang Cheng, Jiahong Zou, Wenhao Xiao, Liangfeng Mou, Junliang Li
  • Patent number: 11081620
    Abstract: A method of producing a semiconductor component includes applying an auxiliary carrier at a first side of a semiconductor body, the auxiliary carrier having a first lateral coefficient of thermal expansion, and applying a connection carrier at a second side of the semiconductor body facing away from the auxiliary carrier, the connection carrier having a second lateral coefficient of thermal expansion, wherein the semiconductor body is grown on a growth substrate different from the auxiliary carrier, the first and the second lateral coefficient of thermal expansion differ by at most 50%, and the growth substrate is removed prior to application of the auxiliary carrier.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: August 3, 2021
    Assignee: OSRAM OLED GmbH
    Inventors: Andreas Plössl, Norwin von Malm, Dominik Scholz, Christoph Schwarzmaier, Martin Rudolf Behringer, Alexander F. Pfeuffer
  • Patent number: 11075328
    Abstract: A method of forming a conductive area at a top surface of a light-emitting diode includes: preparing a substrate having a top surface with a conductive pad thereon; bonding a light-emitting diode having first and second type semiconductor layers and an active layer to the conductive pad; forming a polymer layer on the substrate such that a difference between a distance from a first surface of the polymer layer to the top surface of the substrate and a distance from a second surface of the polymer layer to a top surface of the light-emitting diode is greater than a distance from an interface between a second type semiconductor layer and an active layer to the top surface of the substrate; and etching the polymer layer till the second type semiconductor layer to expose the top surface of the light-emitting diode from the polymer layer.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: July 27, 2021
    Assignee: MIKRO MESA TECHNOLOGY CO., LTD.
    Inventors: Li-Yi Chen, Yi-Ching Lin
  • Patent number: 11075288
    Abstract: A thin film transistor is provided and includes an active layer, a source electrode, a drain electrode, a gate electrode and a gate electrode insulating layer, the active layer includes a source electrode region, a drain electrode region and a channel region, the source electrode region and the drain electrode region include a first metal material, and the channel region includes a semiconductor material made from oxidation of the first metal material.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: July 27, 2021
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Guoying Wang, Hongda Sun, Zhen Song
  • Patent number: 11075199
    Abstract: A method includes forming a first fin on a semiconductor substrate, forming an isolation dielectric material over the first fin, and planarizing the isolation dielectric material. A top surface of the first fin is covered by the isolation dielectric material after planarizing the isolation dielectric material. The method further includes etching back the isolation dielectric material until the first fin protrudes from the isolation dielectric material.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: July 27, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Juei Lee, Chia-Ming Liang, Chi-Hsin Chang, Jin-Aun Ng, Yi-Shien Mor, Huai-Hsien Chiu
  • Patent number: 11069710
    Abstract: A semiconductor memory device includes a memory plane including a plurality of electrode layers stacked on a substrate and a semiconductor layer extending through the plurality of electrode layers in a stacking direction thereof, a circuit provided on the substrate around the memory plane, a first insulating layer covering the circuit, and a second insulating layer including a first portion and a second portion between the substrate and the first insulating layer. The first portion is provided along an outer edge of the memory plane, and the second portion is spaced from the first portion and is provided on the circuit side. The first insulating layer includes a part in contact with the substrate between the first portion and the second portion, and the first insulating layer blocks a diffusion of hydrogen radicals with a higher rate than the second insulating layer.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: July 20, 2021
    Assignee: Toshiba Memory Corporation
    Inventors: Hiroyasu Tanaka, Tomoaki Shino
  • Patent number: 11069715
    Abstract: A memory structure including a SOI substrate, a first transistor, a second transistor, an isolation structure and a capacitor is provided. The SOI substrate includes a silicon base, a dielectric layer and a silicon layer. The first transistor and the second transistor are disposed on the silicon layer. The isolation structure is disposed in the silicon layer between the first transistor and the second transistor. The capacitor is disposed between the first transistor and the second transistor. The capacitor includes a body portion, a first extension portion, a second extension portion and a third extension portion. The first extension portion extends from the body portion to a source/drain region of the first transistor. The second extension portion extends from the body portion to a source/drain region of the second transistor. The third extension portion extends from the body portion, penetrates through the isolation structure and extends into the dielectric layer.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: July 20, 2021
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Shyng-Yeuan Che, Shih-Ping Lee
  • Patent number: 11056567
    Abstract: Methods for depositing a doped metal carbide film on a substrate are disclosed. The methods may include: depositing a doped metal carbide film on a substrate utilizing at least one deposition cycle of a cyclical deposition process; and contacting the doped metal carbide film with a plasma generated from a hydrogen-containing gas. Semiconductor device structures including a doped metal carbide film formed by the methods of the disclosure are also disclosed.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: July 6, 2021
    Assignee: ASM IP Holding B.V.
    Inventors: Dong Li, Peng-Fu Hsu, Petri Raisanen, Moataz Bellah Mousa, Ward Johnson, Xichong Chen
  • Patent number: 11050008
    Abstract: A display apparatus and a method of manufacturing the same are disclosed. The display apparatus includes at least one light emitting diode chip, a conductive portion disposed under the light emitting diode chip and coupled to the light emitting diode chip, and an insulating material surrounding the conductive portion. The conductive portion includes a first conductive portion and a second conductive portion, and the insulating material is formed to expose at least a portion of the upper surfaces of the first conductive portion and the second conductive portion.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: June 29, 2021
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Motonobu Takeya, Jong Ik Lee
  • Patent number: 11043379
    Abstract: Methods for depositing an amorphous carbon layer on a substrate are described. A substrate is exposed to a carbon precursor having a structure of Formula (I). Also described are methods of etching a substrate, including forming an amorphous carbon hard mask on a substrate by exposing the substrate to a carbon precursor having the structure of Formula (I).
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: June 22, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Pramit Manna, Abhijit Basu Mallick
  • Patent number: 11043537
    Abstract: An alternating stack of insulating layers and sacrificial material layers is formed over a substrate. Memory openings are formed through the alternating stack. Protruding tip portions are formed on each of the sacrificial material layers around the memory openings. A plurality of insulating spacers is formed within each memory opening between each vertically neighboring pair of tip portions of the sacrificial material layers. A phase change memory material and a vertical bit line are formed within each of the memory openings. The phase change memory material can be formed as a vertical stack of discrete annular phase change memory material portions, or can be formed as a continuous phase change memory material layer. Each of the sacrificial material layer can be replaced by an electrically conductive layer.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: June 22, 2021
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Yuji Takahashi, Masatoshi Nishikawa, Wei Kuo Shih
  • Patent number: 11031466
    Abstract: A method of manufacturing a semiconductor device includes: forming one or more device epitaxial layers over a main surface of a doped Si base substrate; forming a diffusion barrier structure including alternating layers of Si and oxygen-doped Si in an upper part of the doped Si base substrate adjacent the main surface of the doped Si base substrate, in a lower part of the one or more device epitaxial layers adjacent the main surface of the doped Si base substrate, or in one or more additional epitaxial layers disposed between the main surface of the doped Si base substrate and the one or more device epitaxial layers; and forming a gate above the diffusion barrier structure.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: June 8, 2021
    Assignees: Infineon Technologies Austria AG, Infineon Technologies Americas Corp.
    Inventors: Martin Poelzl, Robert Haase, Maximilian Roesch, Sylvain Leomant, Andreas Meiser, Bernhard Goller, Ravi Keshav Joshi