Patents by Inventor Alexander G. Dickinson

Alexander G. Dickinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160149873
    Abstract: A method for facilitating an authentication related to an electronic transaction between a first and a second user is provided. Authentication data is received from the first user along with transaction data defining the first user and the electronic transaction to be authenticated. This authentication data is compared to enrollment authentication data associated with the first user in order to verify the identity of the first user. When the user is properly verified, access to at least one private cryptographic key stored on a secure server is available for use in securing the electronic transaction. The particular private cryptographic key need not be released from the secure server. Data indicating the status of the authentication may then be sent to one of either the first or second user.
    Type: Application
    Filed: October 5, 2015
    Publication date: May 26, 2016
    Applicant: Security First Corporation
    Inventors: Alexander G. Dickinson, Mark S. O'Hare, Mark D. Rorhbach, James G. Zoccoli, Rick L. Orsini, Aaron A. Brooks, Roger S. Davenport, Philip W. Clough, Richard F. Clayton, Gregory H. Stark, Michelle Ferrante, Brian Berger, Robert T. Dobson, JR.
  • Patent number: 9300649
    Abstract: A system for performing authentication of a first user to a second user includes the ability for the first user to submit multiple instances of authentication data which are evaluated and then used to generate an overall level of confidence in the claimed identity of the first user. The individual authentication instances are evaluated based upon: the degree of match between the user provided by the first user during the authentication and the data provided by the first user during his enrollment; the inherent reliability of the authentication technique being used; the circumstances surrounding the generation of the authentication data by the first user; and the circumstances surrounding the generation of the enrollment data by the first user. This confidence level is compared with a required trust level which is based at least in part upon the requirements of the second user, and the authentication result is based upon this comparison.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: March 29, 2016
    Assignee: Security First Corporation
    Inventors: Alexander G. Dickinson, Brian Berger, Robert T. Dobson
  • Publication number: 20160006514
    Abstract: A transceiver comprising a chip, a semiconductor laser, and one or more photodetectors, the chip comprising optical and optoelectronic devices and electronics circuitry, where the transceiver is operable to: communicate, utilizing the semiconductor laser, an optical source signal into the chip via a light pipe with a sloped reflective surface, generate first optical signals in the chip based on the optical source signal, transmit the first optical signals from the chip via the light pipe, and receive second optical signals from the light pipe and converting the second optical signals to electrical signals via the photodetectors. The optical signals may be communicated out of and in to a top surface of the chip. The one or more photodetectors may be integrated in the chip. The optoelectronic devices may include the one or more photodetectors integrated in the chip. The light pipe may be a planar lightwave circuit (PLC).
    Type: Application
    Filed: September 15, 2015
    Publication date: January 7, 2016
    Inventors: Peter DeDobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn
  • Patent number: 9189777
    Abstract: A method for facilitating an authentication related to an electronic transaction between a first and a second user is provided. Authentication data is received from the first user along with transaction data defining the first user and the electronic transaction to be authenticated. This authentication data is compared to enrollment authentication data associated with the first user in order to verify the identity of the first user. When the user is properly verified, access to at least one private cryptographic key stored on a secure server is available for use in securing the electronic transaction. The particular private cryptographic key need not be released from the secure server. Data indicating the status of the authentication may then be sent to one of either the first or second user.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: November 17, 2015
    Assignee: Security First Corporation
    Inventors: Alexander G. Dickinson, Mark S. Ohare, Mark D. Rohrbach, James G. Zoccoli, Rick L. Orsini, Aaron A. Brooks, Roger S. Davenport, Philip W. Clough, Richard F. Clayton, Gregory H. Stark, Michelle Ferrante, Brian Berger, Robert T. Dobson, Jr.
  • Publication number: 20150309058
    Abstract: A technique is disclosed for sample management for use in conjunction with sequencing devices that sequence biological samples, e.g., DNA and RNA. A sequencing device or a network of sequencing devices may be scheduled according to the characteristics of the samples in queue and the capabilities and availability of sequencing devices. Biological samples may be automatically queued and loaded via a sample distribution system. A sample distribution system may be used to reduce operator intervention.
    Type: Application
    Filed: July 9, 2015
    Publication date: October 29, 2015
    Inventors: Robert C. Kain, Alexander G. Dickinson, Min-Jui Richard Shen, Helmy A. Eltoukhy, Francisco Jose Garcia
  • Patent number: 9136946
    Abstract: A transceiver comprising a plurality of CMOS chips, a first chip comprising optical and optoelectronic devices and at least a second chip comprising electronic devices may be operable to communicate an optical source signal from a semiconductor laser into the first CMOS chip. The optical source signal may be used to generate first optical signals that may be transmitted from the first CMOS chip to optical fibers. Second optical signals may be received from the optical fibers and converted to electrical signals via photodetectors. The optical source signal may be communicated from the semiconductor laser into the CMOS chip via optical fibers in to a top surface and the first optical signals may be communicated out of a top surface of the CMOS chip. The first optical signals may be communicated from the first CMOS chip via optical couplers, which may comprise grating couplers.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: September 15, 2015
    Assignee: Luxtera, Inc.
    Inventors: Peter De Dobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn
  • Patent number: 9116139
    Abstract: A technique is disclosed for sample management for use in conjunction with sequencing devices that sequence biological samples, e.g., DNA and RNA. A sequencing device or a network of sequencing devices may be scheduled according to the characteristics of the samples in queue and the capabilities and availability of sequencing devices. Biological samples may be automatically queued and loaded via a sample distribution system. A sample distribution system may be used to reduce operator intervention.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: August 25, 2015
    Assignee: ILLUMINA, INC.
    Inventors: Robert C. Kain, Alexander G. Dickinson, Min-Jui Richard Shen, Helmy A. Eltoukhy, Francisco Jose Garcia
  • Publication number: 20150227697
    Abstract: The present invention provides a novel approach for consumer-driven interaction with sequencing data or genomic information. Sequencing data access, for users with a variety of access and permissions, may be mediated by a central hub. The hub may also facilitate access to the sequencing data for third party software applications. The hub may also provide data analysis or may have access to analyzed data to use such data in providing a user interface for a genome owner or for non-owner secondary users of the system.
    Type: Application
    Filed: February 12, 2015
    Publication date: August 13, 2015
    Inventors: Nicholas A. Nelson, Alexander G. Dickinson, Kenneth R. Bloom, Sophie I. Coon, Kenneth J. Sherman, Kenneth G. Yocum, Kevin P. Rhodes, Jerome O. Chadel, Matthew L. Posard
  • Publication number: 20140317414
    Abstract: A system for performing authentication of a first user to a second user includes the ability for the first user to submit multiple instances of authentication data which are evaluated and then used to generate an overall level of confidence in the claimed identity of the first user. The individual authentication instances are evaluated based upon: the degree of match between the user provided by the first user during the authentication and the data provided by the first user during his enrollment; the inherent reliability of the authentication technique being used; the circumstances surrounding the generation of the authentication data by the first user; and the circumstances surrounding the generation of the enrollment data by the first user. This confidence level is compared with a required trust level which is based at least in part upon the requirements of the second user, and the authentication result is based upon this comparison.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 23, 2014
    Applicant: Security First Corporation
    Inventors: Alexander G. Dickinson, Brian Berger, Robert T. Dobson
  • Patent number: 8726033
    Abstract: A system for performing authentication of a first user to a second user includes the ability for the first user to submit multiple instances of authentication data which are evaluated and then used to generate an overall level of confidence in the claimed identity of the first user. The individual authentication instances are evaluated based upon: the degree of match between the user provided by the first user during the authentication and the data provided by the first user during his enrollment; the inherent reliability of the authentication technique being used; the circumstances surrounding the generation of the authentication data by the first user; and the circumstances surrounding the generation of the enrollment data by the first user.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: May 13, 2014
    Assignee: Security First Corporation
    Inventors: Alexander G Dickinson, Brian Berger, Robert T Dobson
  • Publication number: 20140127792
    Abstract: A technique is disclosed for sample management for use in conjunction with sequencing devices that sequence biological samples, e.g., DNA and RNA. A sequencing device or a network of sequencing devices may be scheduled according to the characteristics of the samples in queue and the capabilities and availability of sequencing devices. Biological samples may be automatically queued and loaded via a sample distribution system. A sample distribution system may be used to reduce operator intervention.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 8, 2014
    Applicant: Illumina, Inc.
    Inventors: Robert C. Kain, Alexander G. Dickinson, Min-Jui Richard Shen, Helmy A. Eltoukhy, Francisco Jose Garcia
  • Patent number: 8577191
    Abstract: A transceiver comprising a CMOS chip and a plurality of semiconductor lasers coupled with the CMOS chip may be operable to communicate optical source signals from the plurality of semiconductor lasers into the CMOS chip. The source signals may be used to generate first optical signals that may be transmitted from the CMOS chip to optical fibers. Second optical signals may be received from the optical fibers and converted to electrical signals for use by the CMOS chip. The optical source signals may be communicated from the semiconductor lasers into the CMOS chip via optical fibers in to a top surface and the first optical signals may be communicated out of a top surface of the CMOS chip. The first optical signals may be communicated from the CMOS chip via optical couplers, which may comprise grating couplers.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: November 5, 2013
    Assignee: Luxtera Inc.
    Inventors: Peter De Dobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn
  • Publication number: 20130275486
    Abstract: The present invention provides a novel approach for storing, analyzing, and/or accessing biological data in a cloud computing environment. Sequence data generated by a particular sequencing device may be uploaded to the cloud computing environment during a sequencing run, which reduces the on-site storage needs for the sequence data. Analysis of the data may also be performed in the cloud computing environment, and the instructions for such analysis may be set at the originating sequencing device. The sequence data in the cloud computing environment may be shared according to permissions. Further, the sequence data may be modified or annotated by authorized secondary users.
    Type: Application
    Filed: March 8, 2013
    Publication date: October 17, 2013
    Applicant: ILLUMINA, INC.
    Inventors: Alexander G. Dickinson, Francisco Jose Garcia, Robert C. Kain, Scott D. Kahn, Andrew R. Nelson
  • Patent number: 8494969
    Abstract: The invention is a cryptographic server providing interoperability over multiple algorithms, keys, standards, certificate types and issuers, protocols, and the like. Another aspect of the invention is to provide a secure server, or trust engine, having server-centric keys, or in other words, storing cryptographic keys on a server. The server-centric storage of keys provides for user-independent security, portability, availability, and straightforwardness, along with a wide variety of implementation possibilities.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: July 23, 2013
    Assignee: Security First Corp.
    Inventors: Alexander G. Dickinson, Mark D. Rohrbach, Richard F. Clayton, Gregory H. Stark, Michelle Ferrante
  • Publication number: 20130067234
    Abstract: A system for performing authentication of a first user to a second user includes the ability for the first user to submit multiple instances of authentication data which are evaluated and then used to generate an overall level of confidence in the claimed identity of the first user. The individual authentication instances are evaluated based upon: the degree of match between the user provided by the first user during the authentication and the data provided by the first user during his enrollment; the inherent reliability of the authentication technique being used; the circumstances surrounding the generation of the authentication data by the first user; and the circumstances surrounding the generation of the enrollment data by the first user.
    Type: Application
    Filed: July 2, 2012
    Publication date: March 14, 2013
    Applicant: SECURITY FIRST CORPORATION
    Inventors: Alexander G. Dickinson, Brian Berger, Robert T. Dobson, JR.
  • Patent number: 8214650
    Abstract: A system for performing authentication of a first user to a second user includes the ability for the first user to submit multiple instances of authentication data which are evaluated and then used to generate an overall level of confidence in the claimed identity of the first user. The individual authentication instances are evaluated based upon: the degree of match between the user provided by the first user during the authentication and the data provided by the first user during his enrollment; the inherent reliability of the authentication technique being used; the circumstances surrounding the generation of the authentication data by the first user; and the circumstances surrounding the generation of the enrollment data by the first user. This confidence level is compared with a required trust level which is based at least in part upon the requirements of the second user, and the authentication result is based upon this comparison.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: July 3, 2012
    Assignee: Security First Corporation
    Inventors: Alexander G. Dickinson, Brian Berger, Robert T. Dobson, Jr.
  • Patent number: RE44829
    Abstract: Systems and methods for configuring an integrated transceiver are disclosed. In one embodiment, very small form factor transceivers can be configured to allow 10 G optical interconnects over distances up to 2 km. Transceiver circuitry can be integrated on a single die, and be electrically connected to a transmitter such as a laser-diode and a receiver such as a photo-diode. In one embodiment, the laser and photo diodes can be edge-operating, and be mounted on the die. In one embodiment, one or both of the diodes can be surface-operating so as to allow relaxation of alignment requirement. In one embodiment, one or both of the diodes can be mounted on a submount that is separate from the die so as to facilitate separate assembly and testing. In one embodiment, the diodes can be optically coupled to a ferrule via an optical coupling element so as to manage loss in certain situations.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: April 8, 2014
    Assignee: Luxtera, Inc.
    Inventors: Peter DeDobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn
  • Patent number: RE45214
    Abstract: A transceiver on a CMOS chip including optical and optoelectronic devices, and electronic circuitry may be operable to communicate optical signals between the CMOS chip and optical fibers coupled to the CMOS chip via a semiconductor laser and one or more photodetectors. The optical and optoelectronic devices may include waveguides, modulators, multiplexers, switches, and couplers. The photodetector may be integrated in the CMOS chip. The photodetector and the semiconductor laser may be mounted on the CMOS chip. The optical signals may be communicated out of and in to a top surface of the CMOS chip. A transceiver on a CMOS chip including optical and optoelectronic devices, and electronic circuitry, may be operable to communicate optical signals between the CMOS chip and optical fibers coupled to the CMOS chip via grating couplers. The optical signals may be communicated out of and in to a top surface of the CMOS chip.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: October 28, 2014
    Assignee: Luxtera, Inc.
    Inventors: Peter De Dobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn, III
  • Patent number: RE45215
    Abstract: A transceiver comprising a plurality of CMOS chips may be operable to communicate an optical source signal from a semiconductor laser into a first CMOS chip via optical couplers. The optical source signal may be used to generate first optical signals that are transmitted from the first CMOS chip to optical fibers coupled to the first CMOS chip via one or more optical couplers. Second optical signals may be received from the optical fibers and converted to electrical signals via photodetectors in the first CMOS chip. The optical source signal may be communicated from the semiconductor laser into the first CMOS chip via optical fibers in to a top surface and the first optical signals may be communicated out of a top surface of the first CMOS chip. The electrical signals may be communicated to at least a second of the plurality of CMOS chips comprising electronic devices.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: October 28, 2014
    Assignee: Luxtera, Inc.
    Inventors: Peter De Dobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn, III
  • Patent number: RE45390
    Abstract: A transceiver comprising a CMOS chip and a laser coupled to the chip may be operable to communicate an optical source signal from a semiconductor laser into the CMOS chip. The optical source signal may be used to generate first optical signals that are transmitted from the CMOS chip to optical fibers coupled to the CMOS chip. Second optical signals may be received from the optical fibers and converted to electrical signals via photodetectors in the CMOS chip. The optical source signal may be communicated from the semiconductor laser into the CMOS chip via optical fibers in to a top surface and the first optical signals may be communicated out of a top surface of the CMOS chip. The optical source signal may be communicated into the CMOS chip and the first optical signals may be communicated from the CMOS chip via optical couplers, which may comprise grating couplers.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 24, 2015
    Assignee: Luxtera, Inc.
    Inventors: Peter De Dobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn, III