Patents by Inventor Ana Claudia Arias

Ana Claudia Arias has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120238081
    Abstract: A first patterned contact layer, for example a gate electrode, is formed over an insulative substrate. Insulating and functional layers are formed at least over the first patterned contact layer. A second patterned contact layer, for example source/drain electrodes, is formed over the functional layer. Insulative material is then selectively deposited over at least a portion of the second patterned contact layer to form first and second wall structures such that at least a portion of the second patterned contact layer is exposed, the first and second wall structures defining a well therebetween. Electrically conductive or semiconductive material is deposited within the well, for example by jet-printing, such that the first and second wall structures confine the conductive or semiconductive material and prevent spreading and electrical shorting to adjacent devices. The conductive or semiconductive material is in electrical contact with the exposed portion of the second patterned contact layer to form, e.g.
    Type: Application
    Filed: May 16, 2012
    Publication date: September 20, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Jurgen H. Daniel, Ana Claudia Arias
  • Publication number: 20120235145
    Abstract: A first patterned contact layer, for example a gate electrode, is formed over an insulative substrate. Insulating and functional layers are formed at least over the first patterned contact layer. A second patterned contact layer, for example source/drain electrodes, is formed over the functional layer. Insulative material is then selectively deposited over at least a portion of the second patterned contact layer to form first and second wall structures such that at least a portion of the second patterned contact layer is exposed, the first and second wall structures defining a well therebetween. Electrically conductive or semiconductive material is deposited within the well, for example by jet-printing, such that the first and second wall structures confine the conductive or semiconductive material and prevent spreading and electrical shorting to adjacent devices. The conductive or semiconductive material is in electrical contact with the exposed portion of the second patterned contact layer to form, e.g.
    Type: Application
    Filed: May 16, 2012
    Publication date: September 20, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Jurgen H. Daniel, Ana Claudia Arias
  • Patent number: 8268725
    Abstract: A modified coffee-stain method for producing self-organized line structures and other very fine features that involves disposing a solution puddle on a target substrate, and then controlling the peripheral boundary shape of the puddle using a control structure that contacts the puddle's upper surface. The solution is made up of a fine particle solute dispersed in a liquid solvent wets and becomes pinned to both the target substrate and the control structure. The solvent is then caused to evaporate at a predetermined rate such that a portion of the solute forms a self-organized “coffee-stain” line structure on the target substrate surface that is contacted by the peripheral puddle boundary. The target structure is optionally periodically raised to generate parallel lines that are subsequently processed to form, e.g., TFTs for large-area electronic devices.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: September 18, 2012
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, Robert A. Street, Ana Claudia Arias
  • Patent number: 8253174
    Abstract: A thin film transistor (TFT) structure is implemented. This embodiment is much less sensitive than conventional TFTs to alignment errors and substrate distortion. In such a configuration, there is no need to define gate features, so the layout is simplified. Moreover, the gate layer may be patterned by several inexpensive printing or non-printing methods.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: August 28, 2012
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Jurgen H. Daniel, Ana Claudia Arias
  • Publication number: 20120175616
    Abstract: A thin film field effect transistor is disclosed which provides improved time-based channel stability. The field effect transistor includes first and second disordered semiconductor layers separated by an insulator. In an embodiment a carrier injection terminal is provided in a thin semiconductor layer closest to the gate terminal. An electric field is established in the thin semiconductor layer. At sufficient field strength, the electric field extends into the second semiconductor layer, which is in contact with the source and drain terminals. At sufficient field strength a channel is established in the second semiconductor layer, permitting current to flow between source and drain terminals. Above a certain gate voltage, there is sufficient free charge is induced in the first semiconductor layer so that the field does not extend into the second semiconductor, effectively shutting off current between source and drain. Single-device transition detection (as well as other applications) may be obtained.
    Type: Application
    Filed: March 21, 2012
    Publication date: July 12, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Sanjiv Sambandan, Ana Claudia Arias, Gregory Lewis Whiting
  • Patent number: 8211782
    Abstract: A first patterned contact layer, for example a gate electrode, is formed over an insulative substrate. Insulating and functional layers are formed at least over the first patterned contact layer. A second patterned contact layer, for example source/drain electrodes, is formed over the functional layer. Insulative material is then selectively deposited over at least a portion of the second patterned contact layer to form first and second wall structures such that at least a portion of the second patterned contact layer is exposed, the first and second wall structures defining a well therebetween. Electrically conductive or semiconductive material is deposited within the well, for example by jet-printing, such that the first and second wall structures confine the conductive or semiconductive material and prevent spreading and electrical shorting to adjacent devices. The conductive or semiconductive material is in electrical contact with the exposed portion of the second patterned contact layer to form, e.g.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: July 3, 2012
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Jurgen H. Daniel, Ana Claudia Arias
  • Publication number: 20120146463
    Abstract: A printed circuit is produced with a base circuit and a number of optional circuit elements. One or more of the optional circuit elements may be added to the base circuit to determine or change the characteristics of the base circuit. Alternatively, one or more of the optional circuit elements may be removed from the base circuit to determine or change the characteristics of the base circuit. The base circuit and optional circuit elements may be printed on a single substrate. Mechanisms may be provided to facilitate the separation of the optional elements form the substrate either to introduce them into the base circuit or remove them from the base circuit to change the characteristics of the base circuit. A simple, low-cost, robust, and easy to use base circuit and optional circuit element is provided.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 14, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Tse Nga Ng, Jurgen H. Daniel, Ana Claudia Arias, Brent Krusor
  • Patent number: 8164122
    Abstract: A thin film field effect transistor is disclosed which provides improved time-based channel stability. The field effect transistor includes first and second disordered semiconductor layers separated by an insulator. In an embodiment a carrier injection terminal is provided in a thin semiconductor layer closest to the gate terminal. An electric field is established in the thin semiconductor layer. At sufficient field strength, the electric field extends into the second semiconductor layer, which is in contact with the source and drain terminals. At sufficient field strength a channel is established in the second semiconductor layer, permitting current to flow between source and drain terminals. Above a certain gate voltage, there is sufficient free charge is induced in the first semiconductor layer so that the field does not extend into the second semiconductor, effectively shutting off current between source and drain. Single-device transition detection (as well as other applications) may be obtained.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 24, 2012
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, Ana Claudia Arias, Gregory Lewis Whiting
  • Patent number: 8158465
    Abstract: A “vertical” coffee-stain method for producing self-organized line structures and other very fine features that involves disposing a target structure in a solution made up of a fine particle solute dispersed in a liquid solvent such that a “waterline” is formed by the upper (liquid/air) surface of the solution on a targeted linear surface region of the substrate. The solvent is then caused to evaporate at a predetermined rate such that a portion of the solute forms a self-organized “coffee-stain” line structure on the straight-line portion of the substrate surface contacted by the receding waterline. The substrate and staining solution are selected such that the liquid solvent has a stronger attraction to the substrate surface than to itself to produce the required pinning and upward curving waterline. The target structure is optionally periodically raised to generate parallel lines that are subsequently processed to form, e.g., TFTs for large-area electronic devices.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: April 17, 2012
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, Robert A. Street, Ana Claudia Arias
  • Publication number: 20120064652
    Abstract: A light-emissive device comprising a light-emissive material provided between first and second electrodes such that charge carriers can move between the first and second electrodes and the light-emissive material, wherein the device includes a layer of a polymer blend provided between the first and second electrodes, phase separation of the polymers in the polymer blend having been induced in at least a portion of the polymer blend so as to control the propagation of light emitted by the light-emissive material in a predetermined direction.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 15, 2012
    Applicant: CAMBRIDGE ENTERPRISE LTD
    Inventors: J. Devin Mackenzie, Ana Claudia Arias, Richard Henry Friend, Wilhelm Huck
  • Publication number: 20120007079
    Abstract: A thin film field effect transistor is disclosed which provides improved time-based channel stability. The field effect transistor includes first and second disordered semiconductor layers separated by an insulator. In an embodiment a carrier injection terminal is provided in a thin semiconductor layer closest to the gate terminal. An electric field is established in the thin semiconductor layer. At sufficient field strength, the electric field extends into the second semiconductor layer, which is in contact with the source and drain terminals. At sufficient field strength a channel is established in the second semiconductor layer, permitting current to flow between source and drain terminals. Above a certain gate voltage, there is sufficient free charge is induced in the first semiconductor layer so that the field does not extend into the second semiconductor, effectively shutting off current between source and drain. Single-device transition detection (as well as other applications) may be obtained.
    Type: Application
    Filed: September 21, 2011
    Publication date: January 12, 2012
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Sanjiv Sambandan, Ana Claudia Arias, Gregory Lewis Whiting
  • Patent number: 8053818
    Abstract: A thin film field effect transistor is disclosed which provides improved time-based channel stability. The field effect transistor includes first and second disordered semiconductor layers separated by an insulator. In an embodiment a carrier injection terminal is provided in a thin semiconductor layer closest to the gate terminal. An electric field is established in the thin semiconductor layer. At sufficient field strength, the electric field extends into the second semiconductor layer, which is in contact with the source and drain terminals. At sufficient field strength a channel is established in the second semiconductor layer, permitting current to flow between source and drain terminals. Above a certain gate voltage, there is sufficient free charge is induced in the first semiconductor layer so that the field does not extend into the second semiconductor, effectively shutting off current between source and drain. Single-device transition detection (as well as other applications) may be obtained.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: November 8, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, Ana Claudia Arias, Gregory Lewis Whiting
  • Patent number: 8049406
    Abstract: A light-emissive device comprising a light-emissive material provided between first and second electrodes such that charge carriers can move between the first and second electrodes and the light-emissive material, wherein the device includes a layer of a polymer blend provided between the first and second electrodes, phase separation of the polymers in the polymer blend having been induced in at least a portion of the polymer blend so as to control the propagation of light emitted by the light-emissive material in a predetermined direction.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: November 1, 2011
    Assignee: Cambridge University Technical Services Limited
    Inventors: J. Devin Mackenzie, Ana Claudia Arias, Richard Henry Friend, Wilhelm Huck
  • Publication number: 20110147742
    Abstract: A thin film field effect transistor is disclosed which provides improved time-based channel stability. The field effect transistor includes first and second disordered semiconductor layers separated by an insulator. In an embodiment a carrier injection terminal is provided in a thin semiconductor layer closest to the gate terminal. An electric field is established in the thin semiconductor layer. At sufficient field strength, the electric field extends into the second semiconductor layer, which is in contact with the source and drain terminals. At sufficient field strength a channel is established in the second semiconductor layer, permitting current to flow between source and drain terminals. Above a certain gate voltage, there is sufficient free charge is induced in the first semiconductor layer so that the field does not extend into the second semiconductor, effectively shutting off current between source and drain. Single-device transition detection (as well as other applications) may be obtained.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 23, 2011
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, Ana Claudia Arias, Gregory Lewis Whiting
  • Patent number: 7964440
    Abstract: Composite films formed from blends of semiconducting and insulating materials that phase separate on patterned substrates are provided. Phase separation provides isolated and encapsulated areas of semiconductor on the substrate. Processes for preparing and using such composite films are also provided, along with devices including such composite films.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: June 21, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Alberto Salleo, Ana Claudia Arias, William S. Wong
  • Publication number: 20110095342
    Abstract: A first patterned contact layer, for example a gate electrode, is formed over an insulative substrate. Insulating and functional layers are formed at least over the first patterned contact layer. A second patterned contact layer, for example source/drain electrodes, is formed over the functional layer. Insulative material is then selectively deposited over at least a portion of the second patterned contact layer to form first and second wall structures such that at least a portion of the second patterned contact layer is exposed, the first and second wall structures defining a well therebetween. Electrically conductive or semiconductive material is deposited within the well, for example by jet-printing, such that the first and second wall structures confine the conductive or semiconductive material and prevent spreading and electrical shorting to adjacent devices. The conductive or semiconductive material is in electrical contact with the exposed portion of the second patterned contact layer to form, e.g.
    Type: Application
    Filed: October 23, 2009
    Publication date: April 28, 2011
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Jurgen H. Daniel, Ana Claudia Arias
  • Patent number: 7897439
    Abstract: An electronic device comprising a thin film transistor (TFT) array and manufacturing methods thereof according to various embodiments. Jet-printed material is deposited on selected partially formed transistors to form completed transistors. Thus, a selected number of the TFTs are connected into the circuit while the remainder of the TFTs are not connected. An electronic read-out of the array identifies the specific array by distinguishing the connected TFTs from the unconnected ones. For a TFT array with n elements there are 2n alternative configurations; therefore, a relatively small number of TFTs can uniquely identify a huge number of devices. Such uniquely encoded devices have applications for encryption, identification and personalization of electronic systems.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: March 1, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Robert A. Street, Ana Claudia Arias
  • Publication number: 20110027946
    Abstract: A modified coffee-stain method for producing self-organized line structures and other very fine features that involves disposing a solution puddle on a target substrate, and then controlling the peripheral boundary shape of the puddle using a control structure that contacts the puddle's upper surface. The solution is made up of a fine particle solute dispersed in a liquid solvent wets and becomes pinned to both the target substrate and the control structure. The solvent is then caused to evaporate at a predetermined rate such that a portion of the solute forms a self-organized “coffee-stain” line structure on the target substrate surface that is contacted by the peripheral puddle boundary. The target structure is optionally periodically raised to generate parallel lines that are subsequently processed to form, e.g., TFTs for large-area electronic devices.
    Type: Application
    Filed: October 7, 2010
    Publication date: February 3, 2011
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, Robert A. Street, Ana Claudia Arias
  • Patent number: 7867916
    Abstract: A modified coffee-stain method for producing self-organized line structures and other very fine features that involves disposing a solution puddle on a target substrate, and then controlling the peripheral boundary shape of the puddle using a control structure that contacts the puddle's upper surface. The solution is made up of a fine particle solute dispersed in a liquid solvent wets and becomes pinned to both the target substrate and the control structure. The solvent is then caused to evaporate at a predetermined rate such that a portion of the solute forms a self-organized “coffee-stain” line structure on the target substrate surface that is contacted by the peripheral puddle boundary. The target structure is optionally periodically raised to generate parallel lines that are subsequently processed to form, e.g., TFTs for large-area electronic devices.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: January 11, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, Robert A. Street, Ana Claudia Arias
  • Publication number: 20100317159
    Abstract: A “vertical” coffee-stain method for producing self-organized line structures and other very fine features that involves disposing a target structure in a solution made up of a fine particle solute dispersed in a liquid solvent such that a “waterline” is formed by the upper (liquid/air) surface of the solution on a targeted linear surface region of the substrate. The solvent is then caused to evaporate at a predetermined rate such that a portion of the solute forms a self-organized “coffee-stain” line structure on the straight-line portion of the substrate surface contacted by the receding waterline. The substrate and staining solution are selected such that the liquid solvent has a stronger attraction to the substrate surface than to itself to produce the required pinning and upward curving waterline. The target structure is optionally periodically raised to generate parallel lines that are subsequently processed to form, e.g., TFTs for large-area electronic devices.
    Type: Application
    Filed: June 15, 2009
    Publication date: December 16, 2010
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Sanjiv Sambandan, Robert A. Street, Ana Claudia Arias