Patents by Inventor Andreas Kienzle

Andreas Kienzle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090149308
    Abstract: Method for treatment of workpieces of porous carbon material with liquid silicon with the formation of silicon carbide, comprising the following steps: preheating of porous carbon workpieces under an inert gas to a selected operating temperature TB1, delivery of liquid silicon to the porous carbon workpieces at an operating pressure pB2 and an operating temperature TB2 and impregnation of the porous carbon workpieces with liquid silicon, reaction of the liquid silicon in the workpiece at a temperature TB3 with formation of silicon carbide from carbon and silicon, gassing of the workpieces with inert gas, and cooling from the operating temperature TB3 to a conditioning temperature Tk, cooling of workpieces to room temperature, in step c the delivery of silicon and transport of the workpieces taking place over preferably cylindrical rolls which are porous at least in the exterior region and which are pivoted, and their speed of rotation determining the residence time for the delivery of silicon in step c, and t
    Type: Application
    Filed: September 17, 2008
    Publication date: June 11, 2009
    Inventors: Andreas KIENZLE, Johann Daimer, Rudi Beck, Otto Mederle
  • Patent number: 7445095
    Abstract: A brake system includes a friction coupling having organically or inorganically bound metal-containing, sintered-metal-containing and/or CFC-containing brake linings and a brake disc of fiber-reinforced C/SiC ceramic composite material. A friction layer and/or a surface of the brake disc subject to friction has a proportion of SiC greater than 65% and material compositions in a core region and a surface region of the brake disc are different. The brake system may be used in motor vehicles, rail vehicles or aircraft.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: November 4, 2008
    Assignee: AUDI AG
    Inventors: Moritz Bauer, Udo Gruber, Michael Heine, Andreas Kienzle, Rainer Zimmermann-Chopin
  • Publication number: 20080213155
    Abstract: A method for treating workpieces that consist of porous carbon material with liquid silicon with the formation of silicon carbide, comprising the steps: Preheating porous carbon workpieces under inert gas to the selected operating temperature TB1, feeding liquid silicon to the porous carbon workpieces at an operating pressure pB2 and an operating temperature TB2, and impregnating the porous carbon workpieces with liquid silicon, reaction of the liquid silicon in the workpiece at a temperature TB3 with the formation of silicon carbide that consists of carbon and silicon, gassing the workpiece with inert gas and cooling from the operating temperature TB3 to the conditioning temperature Tk, cooling the workpieces to room temperature, the temperature TB3 being greater than or equal to the temperature TB2, and the workpiece in step d of the method no longer being in contact with liquid silicon outside of the workpiece.
    Type: Application
    Filed: March 1, 2007
    Publication date: September 4, 2008
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Johann Daimer, Rudi Beck, Otto Mederle, Matthieu Schwartz, Jens Rosenlocher
  • Patent number: 7413701
    Abstract: Clutch linings comprising fiber-reinforced ceramic materials which contain short carbon fibers and whose matrix has a mass fraction of at least 40% of silicon carbide, process for producing them and their use in clutch systems, in particular for motor vehicles.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: August 19, 2008
    Assignee: SGL Carbon AG
    Inventors: Andreas Kienzle, Mario Krupka, Gustavo Cabello, Jens Rosenloecher
  • Publication number: 20080176067
    Abstract: A process is provided for producing shaped bodies including carbon fiber reinforced carbon in which the fibers are present in the form of bundles having a defined length, width and thickness. The defined configuration of the fibers in the bundles allows a targeted configuration of the reinforcing fibers in the carbon matrix and thus a structure of the reinforcement which matches the stress of shaped bodies including carbon fiber reinforced carbon, for example brake disks. A shaped body produced according to the invention is also provided.
    Type: Application
    Filed: April 11, 2007
    Publication date: July 24, 2008
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20080138578
    Abstract: A composition comprising polymer-bound fiber tows containing carbon fibers, the polymer-bound fiber tows having an average length of 3 mm to 50 mm measured in the fiber direction, and an average bundle thickness of 0.1 mm to 10 mm measured perpendicular to the fiber direction, and in which at least 75% of all polymer-bound fiber tows have a length that is at least 90% and not greater than 110% of the average length combined with a carbon-ceramic material.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 12, 2008
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20080125306
    Abstract: Ceramic materials with a matrix which contains at least one carbide, at least one carbide-forming element and carbon, and which furthermore contain a dispersed phase of carbon particles with spherical shape and an average diameter of 0.2 ?m to 800 ?m, a process for their production and their use for thermal insulation, as a protective layer in ceramic armoring against mechanical action, or as a friction layer in brake disks or clutch disks.
    Type: Application
    Filed: June 7, 2007
    Publication date: May 29, 2008
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20070284773
    Abstract: Method for manufacturing friction disks with ceramic materials with at least one friction layer, with a matrix containing silicon carbide, silicon and carbon, in the first step a mixture of a fine silicon and/or fine particles of other carbide-forming elements with at least one other component selected from a resin in particulate form and a binder selected from resins, pitches and mixtures of them, being prepared, in the second step, the mixture being deaerated and at an elevated temperature of up to 280° C. being pressed and hardened into a cylindrical or cylindrical annular disk, in the third step the hardened disk being treated by heating to a temperature of approx. 750° C. to approx. 1300° C.
    Type: Application
    Filed: June 7, 2007
    Publication date: December 13, 2007
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20070267777
    Abstract: Process for producing bodies from ceramic materials using silicon carbide, comprising the steps: configuration of fiber-reinforced porous bodies (1, 5) that consist of carbon on a base (2) that is inert relative to liquid silicon, the bodies having cavities (3) that are accessible from the exterior or surface recesses (3?), and the cavities (3) being closed at the bottom in the porous bodies or the surface recesses (3?) together with the base (2) forming a reservoir that is sealed at the bottom; heating the configuration by introduction of energy to melt the silicon (6) that is present in the reservoir; and infiltrating the melted silicon in the bodies (1, 5) and reaction of the silicon with the carbon to form silicon carbide; and use of the thus produced bodies as brake disks and as clutch driving disks.
    Type: Application
    Filed: May 18, 2007
    Publication date: November 22, 2007
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Johann Daimer
  • Publication number: 20070237954
    Abstract: A process for the impregnation of carbon fiber bundles enables the carbon fiber bundles to be impregnated with a curable liquid resin without the impregnated fiber bundles sticking together. The fiber bundles are present in a mechanically generated fluidized bed during the impregnation and are held in the fluidized bed until the resin has been cured or at least dried. A resin-impregnated carbon fiber bundle, a shaped body and an intermediate body for silicization are also provided.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 11, 2007
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Publication number: 20070158150
    Abstract: Carbon-ceramic brake disks that comprise several layers, whereby at least one layer is used as a bearing element and at least one layer acts as a friction layer, whereby the bearing element and at least one friction layer are separated by an intermediate layer, characterized in that the intermediate layer has reinforcement fibers in the form of fiber bundles, whereby the fiber bundles are encased by a layer that consists of a mixture of silicon carbide, silicon and carbon, which can be obtained by heat treatment of a mixture that consists of silicon powder and a carbonized resin or carbonized pitch at a temperature of 900° C. up to 1700° C. in an environment devoid of oxidizing agents. A process for their manufacture and use, in particular in automotive brake systems.
    Type: Application
    Filed: October 31, 2006
    Publication date: July 12, 2007
    Applicant: Audi AG
    Inventors: Andreas Kienzle, Ingrid Kratschmer
  • Patent number: 7219776
    Abstract: A friction disc, in particular a brake or clutch disc, includes carbon fiber-reinforced ceramic composite material with at least one top surface formed as a friction surface. At least part of the friction surface is formed of a different material, in particular of a carbon-containing material. The different material exhibits lower wear and oxidation resistance than that of the rest of the friction surface and a supporting zone of the friction disc. A visual, audible or mechanical signal is produced under operating conditions due to comparatively greater wear. The signal provides a warning that the service life of the friction disc is being exceeded. A process for producing the friction disc is also provided.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: May 22, 2007
    Assignee: Audi AG
    Inventors: Moritz Bauer, Bodo Benitsch, Martin Christ, Udo Gruber, Michael Heine, Andreas Kienzle, Jens Rosenlöcher, Rainer Zimmermann-Chopin
  • Patent number: 7191885
    Abstract: In a friction pairing for clutch systems of two materials and processes for producing the pairing, one of the materials is a fiber-reinforced ceramic or metallic material A reinforced by carbon or ceramic fibers or whiskers. Material B acting against the material A in the friction pairing is selected from the group consisting of ceramic materials B11 and metallic materials B12, sintered metals B2, sintered oxidic ceramics B3, sintered nitridic ceramics B4, sintered carbidic ceramics B5 and organic sintered materials B6.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: March 20, 2007
    Assignee: SGL Carbon AG
    Inventors: Andreas Kienzle, Mario Krupka, Gustavo Cabello, Peter Winkelmann, Joachim Müller
  • Patent number: 7138190
    Abstract: Composite which contains reinforcing fibers comprising carbon and whose matrix comprises silicon carbide, silicon and copper, with the mass fraction of copper in the composite being up to 55%, processes for producing it, in particular by liquid infiltration of C/C intermediate bodies with melts comprising Si and/or Cu and Si, and also its use as friction lining in a friction pairing with ceramic brake discs or clutch discs comprising C/SiC.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: November 21, 2006
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Martin Christ, Ronald Huener, Andreas Kienzle, Rainer Zimmermann-Chopin
  • Patent number: 7105111
    Abstract: Process for producing hollow bodies comprising fibre-reinforced ceramic materials, where cores whose shape corresponds to that of the hollow spaces are produced in a first step, a green body is produced in a second step by introducing the abovementioned cores and a press moulding compound into a mould, where the press moulding compound comprises carbon fibres and/or carbon threads and pitch and/or resins, the green body is cured in a third step by heating under pressure, and then carbonised in a fourth step by heating in the absence of oxidants to form a C/C body, which latter can be infiltrated with liquid metal with retention of its shape in a fifth step, with at least partial formation of carbides, where the cores comprise a material which is non-meltable but undergoes at least sufficient shrinkage above the curing temperature of the shaping by pressing of the press moulding compound for the shrunken core to be able to be taken out from the carbonised body; hollow bodies produced by this process and also t
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: September 12, 2006
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Michael Heine, Udo Gruber, Ronald Huener, Andreas Kienzle, Andreas Rahn, Rainer Zimmermann-Chopin
  • Publication number: 20060076699
    Abstract: A polymer-bonded fiber agglomerate includes short fibers selected from carbon, ceramic materials, glasses, metals and organic polymers, and a polymeric bonding resin selected from synthetic resins and thermoplastics. The fiber agglomerates have an average length, measured in the fiber direction, of from 3 mm to 50 mm and an average thickness, measured perpendicularly to the fiber direction, of from 0.1 mm to 10 mm. At least 75% of all of the contained fibers have a length which is at least 90% and not more than 110% of the fiber agglomerate average length. A fiber-reinforced composite material having the fiber agglomerate and processes for the production thereof are also provided.
    Type: Application
    Filed: October 11, 2005
    Publication date: April 13, 2006
    Inventors: Peter Domagalski, Alfred Hausler, Ingrid Kratschmer, Andreas Kienzle, Dieter Wustner
  • Publication number: 20060071373
    Abstract: Process for producing hollow bodies comprising fibre-reinforced ceramic materials, where cores whose shape corresponds to that of the hollow spaces are produced in a first step, a green body is produced in a second step by introducing the abovementioned cores and a press moulding compound into a mould, where the press moulding compound comprises carbon fibres and/or carbon threads and pitch and/or resins, the green body is cured in a third step by heating under pressure, and then carbonised in a fourth step by heating in the absence of oxidants to form a C/C body, which latter can be infiltrated with liquid metal with retention of its shape in a fifth step, with at least partial formation of carbides, where the cores comprise a material which is non-meltable but undergoes at least sufficient shrinkage above the curing temperature of the shaping by pressing of the press moulding compound for the shrunken core to be able to be taken out from the carbonised body; hollow bodies produced by this process and also t
    Type: Application
    Filed: September 26, 2002
    Publication date: April 6, 2006
    Inventors: Moritz Bauer, Michael Heine, Udo Gruber, Ronald Huener, Andreas Kienzle, Andreas Rahn, Rainer Zimmermann-Chopin
  • Patent number: 7011786
    Abstract: Process for producing shaped bodies comprising fiber-reinforced ceramic materials, where a green body is produced in a first step by introducing a press moulding composition into a mold, where the press moulding composition comprises carbon fibers and/or carbon filaments and pitch and/or resins which, when treated thermally and with the exclusion of oxidizing agents, form carbon-containing residues, the green body is cured in a second step by heating to a temperature of from 120° C. to 280° C. under pressure, the cured green body, also referred to as intermediate body, is carbonized in a third step by heating in a nonoxidizing atmosphere to a temperature of from about 750° C. to about 1100° C.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: March 14, 2006
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Michael Heine, Andreas Kienzle, Ronald Huener, Rainer Zimmermann-Chopin, Andreas Rahn
  • Patent number: 7011888
    Abstract: Process for protecting fiber-reinforced, carbon-containing composites whose matrix comprises, at least in the outer layer, silicon carbide (SiC) and also silicon (Si) and/or silicon alloys against oxidation, which comprises the steps a) impregnation of the composite with an aqueous, phosphate-containing solution, b) drying, c) heat treatment at a temperature which is at least sufficient to convert the dried solution into insoluble compounds which are suitable for forming a self-healing glass, wherein the composite is treated oxidatively to form silicon oxide (SiO2) either prior to step a), between steps a) and b) or during or after step b) and/or c).
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: March 14, 2006
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Martin Christ, Udo Gruber, Andreas Kienzle, Jens Rosenlöcher, Rainer Zimmerman-Chopin
  • Patent number: 7011785
    Abstract: Process for producing hollow bodies comprising fiber-reinforced ceramic materials, where mold cores whose shape corresponds to that of the hollow spaces are produced in a first step, at least one mold core together with a press moulding composition or formable fiber composition are introduced into a mold, where the press moulding composition comprises carbon fibers and/or carbon filaments and thermally curable carbonizable binders, in such a way that the position of the cores corresponds to the desired position of the hollow spaces to be formed in a second step, the composition is cured in a third step by heating to a temperature of from 120° C. to 280° C., to give a green body, the strengthened green body is carbonized and or graphitized in a fourth step by heating in a nonoxidizing atmosphere to a temperature of from about 750° C. to about 2400° C.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: March 14, 2006
    Assignee: SGL Carbon AG
    Inventors: Moritz Bauer, Michael Heine, Andreas Kienzle, Ronald Huener, Andreas Rahn, Rainer Zimmermann-Chopin