Patents by Inventor An-Fu YU

An-Fu YU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240159752
    Abstract: Disclosed herein is a method for determining whether a subject has or is at risk of developing colorectal cancer with an ex vivo biological sample isolated from the subject. The method comprises: determining the levels of at least two target proteins with the aid of mass spectrometry, in which the at least two target proteins are selected from the group consisting of ADAM10, CD59, and TSPAN9; and assessing whether the subject has or is at risk of developing the colorectal cancer based on the levels of the at least two target proteins. The present method may serve as a potential means for diagnosing and predicting the incidence of colorectal cancer, and the subject in need thereof could receive a suitable therapeutic regimen in time in accordance with the diagnostic results produced by the present method.
    Type: Application
    Filed: February 20, 2023
    Publication date: May 16, 2024
    Applicant: Chang Gung University
    Inventors: Jau-Song YU, Srinivas DASH, Chia-Chun WU, Sheng-Fu CHIANG, Yu-Ting LU
  • Publication number: 20240162208
    Abstract: A structure with a photodiode, an HEMT and an SAW device includes a photodiode and an HEMT. The photodiode includes a first electrode and a second electrode. The first electrode contacts a P-type III-V semiconductor layer. The second electrode contacts an N-type III-V semiconductor layer. The HEMT includes a P-type gate disposed on an active layer. A gate electrode is disposed on the P-type gate. Two source/drain electrodes are respectively disposed at two sides of the P-type gate. Schottky contact is between the first electrode and the P-type III-V semiconductor layer, and between the gate electrode and the P-type gate. Ohmic contact is between the second electrode and the first N-type III-V semiconductor layer, and between one of the two source/drain electrodes and the active layer and between the other one of two source/drain electrodes and the active layer.
    Type: Application
    Filed: December 7, 2022
    Publication date: May 16, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Chih-Wei Chang, Fu-Yu Tsai, Bin-Siang Tsai, Chung-Yi Chiu
  • Publication number: 20240162109
    Abstract: In an embodiment, a package includes an integrated circuit device attached to a substrate; an encapsulant disposed over the substrate and laterally around the integrated circuit device, wherein a top surface of the encapsulant is coplanar with the top surface of the integrated circuit device; and a heat dissipation structure disposed over the integrated circuit device and the encapsulant, wherein the heat dissipation structure includes a spreading layer disposed over the encapsulant and the integrated circuit device, wherein the spreading layer includes a plurality of islands, wherein at least a portion of the islands are arranged as lines extending in a first direction in a plan view; a plurality of pillars disposed over the islands of the spreading layer; and nanostructures disposed over the pillars.
    Type: Application
    Filed: January 10, 2023
    Publication date: May 16, 2024
    Inventors: Hung-Yi Kuo, Chen-Hua Yu, Kuo-Chung Yee, Yu-Jen Lien, Ke-Han Shen, Wei-Kong Sheng, Chung-Shi Liu, Szu-Wei Lu, Tsung-Fu Tsai, Chung-Ju Lee, Chih-Ming Ke
  • Patent number: 11982866
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: May 14, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Liang-Ting Ho, Chen-Er Hsu, Yi-Liang Chan, Fu-Lai Tseng, Fu-Yuan Wu, Chen-Chi Kuo, Ying-Jen Wang, Wei-Han Hsia, Yi-Hsin Tseng, Wen-Chang Lin, Chun-Chia Liao, Shou-Jen Liu, Chao-Chun Chang, Yi-Chieh Lin, Shang-Yu Hsu, Yu-Huai Liao, Shih-Wei Hung, Sin-Hong Lin, Kun-Shih Lin, Yu-Cheng Lin, Wen-Yen Huang, Wei-Jhe Shen, Chih-Shiang Wu, Sin-Jhong Song, Che-Hsiang Chiu, Sheng-Chang Lin
  • Publication number: 20240153916
    Abstract: A semiconductor device includes a bottom semiconductor die including a bottom semiconductor die sidewall, a top semiconductor die bonded to the bottom semiconductor die and including a top semiconductor die sidewall, and a molding material layer formed on an upper surface of the bottom semiconductor die, on the top semiconductor die sidewall, and on the bottom semiconductor die sidewall. A method of forming a semiconductor device includes mounting a bottom semiconductor die including a bottom semiconductor die sidewall on a carrier substrate, mounting a top semiconductor die including a top semiconductor die sidewall on the bottom semiconductor die, and forming a molding material layer on an upper surface of the bottom semiconductor die, on the top semiconductor die sidewall, and on the bottom semiconductor die sidewall.
    Type: Application
    Filed: April 21, 2023
    Publication date: May 9, 2024
    Inventors: Tsung-Fu TSAI, Chen-Hua YU, Szu-Wei LU
  • Publication number: 20240145133
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a polymer matrix and a first conductive filler. The polymer matrix includes a polyolefin-based polymer and a fluoropolymer. The fluoropolymer has a melt flow index higher than 1.9 g/10 min, and the polyolefin-based polymer and the fluoropolymer together form an interpenetrating polymer network (IPN). The first conductive filler has a metal-ceramic compound dispersed in the polymer matrix.
    Type: Application
    Filed: April 5, 2023
    Publication date: May 2, 2024
    Inventors: CHEN-NAN LIU, YUNG-HSIEN CHANG, CHENG-YU TUNG, HSIU-CHE YEN, Chia-Yuan LEE, Yao-Te CHANG, FU-HUA CHU
  • Publication number: 20240145132
    Abstract: An over-current protection device includes first and second electrode layers and a PTC material layer laminated therebetween. The PTC material layer includes a polymer matrix, and a conductive filler. The polymer matrix has a fluoropolymer. The total volume of the PTC material layer is calculated as 100%, and the fluoropolymer accounts for 47-62% by volume of the PTC material layer. The fluoropolymer has a melt viscosity higher than 3000 Pa·s.
    Type: Application
    Filed: March 16, 2023
    Publication date: May 2, 2024
    Inventors: CHENG-YU TUNG, CHEN-NAN LIU, Chia-Yuan Lee, HSIU-CHE YEN, YUNG-HSIEN CHANG, Yao-Te Chang, FU-HUA CHU
  • Publication number: 20240139281
    Abstract: The present invention relates to the field of biomedicine, and in particular to a use of goji glycopeptide in the preparation of a drug for preventing and/or treating amyotrophic lateral sclerosis. Experimental results prove the use of goji glycopeptide in the preparation of a drug for preventing and/or treating amyotrophic lateral sclerosis.
    Type: Application
    Filed: August 21, 2023
    Publication date: May 2, 2024
    Applicants: NINGXIA QIPEPTIDE TECHNOLOGY CO., LTD
    Inventors: Weidong LE, Guohui SU, Xiaolan XU, Xiaojiao XU, Libing ZHOU, Li ZHANG, Zhexiong YU, Jinxia WANG, Fu FAN
  • Publication number: 20240134250
    Abstract: The present disclosure provides a base assembly of voice coil motor and a voice coil motor. The base assembly includes a base body having a first elastic piece connecting area, a lower elastic piece disposed on the first elastic piece connecting area, and a first terminal disposed in the base body. The first terminal has: a first conductive part disposed in the base body; a first terminal connecting part disposed on one side of the first conductive part and extending toward a direction away from the first conductive part, wherein a part of the first terminal connecting part protrudes from the first elastic piece connecting area and is contacted and connected with the lower elastic piece; and an engaging part disposed on one side of the first terminal connecting part and extending toward a direction away from the first terminal connecting part.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 25, 2024
    Applicant: Lanto Electronic Limited
    Inventors: Wen-Yen HUANG, Fu-Yuan WU, Shang-Yu HSU, Meng-Ting LIN, BingBing MA, Jie DU
  • Patent number: 11966255
    Abstract: A fixing structure used to connect a display panel to a housing of an electronic device during manufacture of the electronic device includes a fixing member, an auxiliary member spaced apart from the fixing member, and supporting posts disposed between the fixing member and the auxiliary member. The fixing member is to be bonded to the display panel. A projection of an outer edge of the auxiliary member on a plane of the fixing member is outside of an outer edge of the fixing member. The supporting posts and the auxiliary member are removed after the display panel is bonded to the fixing member. A method for assembling the display panel with the fixing structure is also disclosed.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: April 23, 2024
    Assignee: Chiun Mai Communication Systems, Inc.
    Inventors: Chia-Ju Lin, Fu-Hsin Sung, Meng-Yu Chou
  • Patent number: 11967563
    Abstract: A Fan-Out package having a main die and a dummy die side-by-side is provided. A molding material is formed along sidewalls of the main die and the dummy die, and a redistribution layer having a plurality of vias and conductive lines is positioned over the main die and the dummy die, where the plurality of vias and the conductive lines are electrically connected to connectors of the main die.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: April 23, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yan-Fu Lin, Chen-Hua Yu, Meng-Tsan Lee, Wei-Cheng Wu, Hsien-Wei Chen
  • Publication number: 20240128217
    Abstract: A semiconductor device includes a first semiconductor die and a second semiconductor die connected to the first semiconductor die. Each of the first semiconductor die and the second semiconductor die includes a substrate, a conductive bump formed on the substrate and a conductive contact formed on the conductive bump. The conductive contact has an outer lateral sidewall, there is an inner acute angle included between the outer lateral sidewall and the substrate is smaller than 85°, and the conductive contact of the first semiconductor die is connected opposite to the conductive contact of the second semiconductor die.
    Type: Application
    Filed: January 20, 2023
    Publication date: April 18, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Jung CHEN, Chen Chiang YU, Wei-An TSAO, Tsung-Fu TSAI, Szu-Wei LU, Chung-Shi LIU
  • Publication number: 20240128231
    Abstract: Semiconductor devices and methods of manufacturing the semiconductor devices are presented. In embodiments the methods of manufacturing include depositing a first bonding layer on a first substrate, wherein the first substrate comprises a semiconductor substrate and a metallization layer. The first bonding layer and the semiconductor substrate are patterned to form first openings. A second substrate is bonded to the first substrate. After the bonding the second substrate, the second substrate is patterned to form second openings, at least one of the second openings exposing at least one of the first openings. After the patterning the second substrate, a third substrate is bonded to the second substrate, and after the bonding the third substrate, the third substrate is patterned to form third openings, at least one of the third openings exposing at least one of the second openings.
    Type: Application
    Filed: January 4, 2023
    Publication date: April 18, 2024
    Inventors: Fu Wei Liu, Pei-Wei Lee, Yun-Chung Wu, Bo-Yu Chiu, Szu-Hsien Lee, Mirng-Ji Lii
  • Publication number: 20240128139
    Abstract: A sensor package structure includes a substrate, a sensor chip disposed on the substrate along a predetermined direction for being electrically coupled to each other, a light-permeable layer, an adhesive layer having a ring-shape and sandwiched between the sensor chip and the light-permeable layer, and an encapsulant formed on the substrate. The adhesive layer is formed with at least one type of a buffering cavity, wave-shaped slots, and rectangular slots, which penetrate therethrough along the predetermined direction. The buffering cavity can be located in the adhesive layer, and any one type of the wave-shaped slots and the rectangular slots can be respectively recessed in an inner side and an outer side of the adhesive layer. A minimum width of the adhesive layer is greater than or equal to 50% of a predetermined width between the inner side and the outer side.
    Type: Application
    Filed: June 6, 2023
    Publication date: April 18, 2024
    Inventors: WEI-LI WANG, JYUN-HUEI JIANG, WEN-FU YU, BAE-YINN HWANG, CHIEN-HUNG LIN
  • Publication number: 20240128233
    Abstract: A sensor package structure and a manufacturing method thereof are provided. The sensor package structure includes a substrate, a fixing adhesive layer disposed on the substrate, a sensor chip adhered to the fixing adhesive layer, an annular adhering layer disposed on the sensor chip, a light-permeable sheet adhered to the annular adhering layer, and a plurality of metal wires that are electrically coupled to the substrate and the sensor chip. The size of the light-permeable sheet is smaller than that of the sensor chip.
    Type: Application
    Filed: June 6, 2023
    Publication date: April 18, 2024
    Inventors: CHIA-SHUAI CHANG, WEN-FU YU, BAE-YINN HWANG, WEI-LI WANG, CHIEN-HUNG LIN
  • Publication number: 20240128291
    Abstract: A sensor package structure includes a substrate, a sensor chip disposed on and electrically coupled to the substrate, a light-permeable layer, an adhesive layer having a ring-shape and sandwiched between the sensor chip and the light-permeable layer, and an encapsulant formed on the substrate. The adhesive layer has two adhering surfaces having a same area and a middle cross section located at a middle position between the two adhering surfaces. An area of the middle cross section is 115% to 200% of an area of any one of the two adhering surfaces. The adhesive layer can provide for light to travel therethrough, and enables the light therein to change direction and to attenuate. The sensor chip, the adhesive layer, and the light-permeable layer are embedded in the encapsulant, and an outer surface of the light-permeable layer is at least partially exposed from the encapsulant.
    Type: Application
    Filed: June 6, 2023
    Publication date: April 18, 2024
    Inventors: CHIA-SHUAI CHANG, CHIEN-HUNG LIN, WEI-LI WANG, WEN-FU YU, BAE-YINN HWANG
  • Publication number: 20240127988
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a first polymer and a conductive filler. The first polymer consists of polyvinylidene difluoride (PVDF), and PVDF exists in different phases such as ?-PVDF, ?-PVDF and ?-PVDF. The total amount of ?-PVDF, ?-PVDF and ?-PVDF is calculated as 100%, and the amount of ?-PVDF accounts for 48% to 55%. The conductive filler has a metal-ceramic compound.
    Type: Application
    Filed: March 2, 2023
    Publication date: April 18, 2024
    Inventors: HSIU-CHE YEN, YUNG-HSIEN CHANG, CHENG-YU TUNG, Chia-Yuan Lee, CHEN-NAN LIU, Yao-Te Chang, FU-HUA CHU
  • Publication number: 20240127989
    Abstract: An over-current protection device includes a first metal layer, a second metal layer and a heat-sensitive layer laminated therebetween. The heat-sensitive layer exhibits a positive temperature coefficient (PTC) characteristic and includes a first polymer and a conductive filler. The first polymer consists of polyvinylidene difluoride (PVDF), and PVDF exists in different phases such as ?-PVDF, ?-PVDF and ?-PVDF. The total amount of ?-PVDF, ?-PVDF and ?-PVDF is calculated as 100%, and the amount of ?-PVDF accounts for 33% to 42%.
    Type: Application
    Filed: January 25, 2023
    Publication date: April 18, 2024
    Inventors: CHIA-YUAN LEE, CHENG-YU TUNG, HSIU-CHE YEN, CHEN-NAN LIU, YUNG-HSIEN CHANG, YAO-TE CHANG, FU-HUA CHU
  • Patent number: 11959921
    Abstract: A method for forming dendritic mesoporous nanoparticles comprising preparing a mixture containing one or more polymer precursors, a silica precursor, and a compound that reacts with silica and reacts with the polymer or oligomer formed from the one or more polymer precursors, and stirring the mixture whereby nanoparticles are formed, and subsequently treating the nanoparticles to form dendritic mesoporous silica nanoparticles or dendritic mesoporous carbon nanoparticles. The silica precursor may comprise tetraethyl orthosilicate (TEOS), the one or more polymer precursors may comprise 3-aminophenol and formaldehyde and the compound may be ethylene diamine (EDA). There is a window of amount of EDA present that will result in asymmetric particles being formed. If a greater amount of EDA is present, symmetrical particles will be formed.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: April 16, 2024
    Assignee: THE UNIVERSITY OF QUEENSLAND
    Inventors: Chengzhong (Michael) Yu, Jianye Fu, Jinqing Jiao, Yang Liu
  • Publication number: 20240120402
    Abstract: A semiconductor device structure, along with methods of forming such, are described. The semiconductor device structure includes a first dielectric feature extending along a first direction, the first dielectric feature comprising a first dielectric layer having a first sidewall and a second sidewall opposing the first sidewall, a first semiconductor layer disposed adjacent the first sidewall, the first semiconductor layer extending along a second direction perpendicular to the first direction, a second dielectric feature extending along the first direction, the second dielectric feature disposed adjacent the first semiconductor layer, and a first gate electrode layer surrounding at least three surfaces of the first semiconductor layer, and a portion of the first gate electrode layer is exposed to a first air gap.
    Type: Application
    Filed: November 19, 2023
    Publication date: April 11, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jia-Ni YU, Kuo-Cheng CHIANG, Mao-Lin HUANG, Lung-Kun CHU, Chung-Wei HSU, Chun-Fu LU, Chih-Hao WANG, Kuan-Lun CHENG