Patents by Inventor Anthony J. Annunziata

Anthony J. Annunziata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170062708
    Abstract: A method for forming a memory device includes masking a photoresist material using a reticle and a developer having a polarity opposite that of the photoresist to provide an island of photoresist material. A planarizing layer is etched to establish a pillar of planarizing material defined by the island of photoresist material. A metal layer is etched to form a metal pillar having a diameter about the same as the pillar of planarizing material. A memory stack is etched to form a memory stack pillar having a diameter about the same as the metal pillar. A magnetoresistive memory cell includes a magnetic tunnel junction pillar having a circular cross section. The pillar has a pinned magnetic layer, a tunnel barrier layer, and a free magnetic layer. A first conductive contact is disposed above the magnetic tunnel junction pillar. A second conductive contact is disposed below the magnetic tunnel junction pillar.
    Type: Application
    Filed: August 31, 2015
    Publication date: March 2, 2017
    Inventors: Anthony J. Annunziata, Armand A. Galan, Steve Holmes, Eric A. Joseph, Gen P. Lauer, Qinghuang Lin, Nathan P. Marchack
  • Publication number: 20170062707
    Abstract: A magnetoresistive memory cell includes a magnetic tunnel junction pillar having a circular cross section. The pillar has a pinned magnetic layer, a tunnel barrier layer, and a free magnetic layer. A first conductive contact is disposed above the magnetic tunnel junction pillar. A second conductive contact is disposed below the magnetic tunnel junction pillar.
    Type: Application
    Filed: June 16, 2016
    Publication date: March 2, 2017
    Inventors: Anthony J. Annunziata, Armand A. Galan, Steve Holmes, Eric A. Joseph, Gen P. Lauer, Qinghuang Lin, Nathan P. Marchack
  • Publication number: 20170062701
    Abstract: A mechanism is provided for fabricating a thermally assisted magnetoresistive random access memory device. A bottom thermal barrier is formed on a bottom contact. A magnetic tunnel junction is formed on the bottom thermal barrier. The magnetic tunnel junction includes a top ferromagnetic layer formed on a tunnel barrier. The tunnel barrier is formed on a bottom ferromagnetic layer. A top thermal barrier is formed on the top ferromagnetic layer. A top contact is formed on the top thermal barrier. The top contact is reduced to a first diameter. The tunnel barrier and the bottom ferromagnetic layer each have a second diameter. The first diameter of the top contact is smaller than the second diameter.
    Type: Application
    Filed: November 9, 2016
    Publication date: March 2, 2017
    Inventors: Anthony J. Annunziata, Lucian Prejbeanu, Philip L. Trouilloud, Daniel C. Worledge
  • Patent number: 9576634
    Abstract: The present invention provides integrated circuit chips having chip identification aspects. The chips include magnetic tunnel junction (MTJ) structures, and more specifically, include permanent bit strings used for chip identification and/or authentication. Systems and processes for chip identification are also disclosed herein. The MTJ element structures provided herein can have a defined resistance profile such that the intrinsic variability of the MTJ element structure is used to encode and generate a bit string that becomes a fingerprint for the chip. In some embodiments, an oxygen treatment covering all or a selected portion of an array of MTJ elements can be used to create a mask or secret key that can be used and implemented to enhance chip identification.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Chandrasekharan Kothandaraman, Philip L. Trouilloud
  • Publication number: 20170047506
    Abstract: Embodiments are directed to a sensor having a first electrode, a second electrode and a detector region electrically coupled between the first electrode region and the second electrode region. The detector region includes a first layer having a topological insulator. The topological insulator includes a conducting path along a surface of the topological insulator, and the detector region further includes a second layer having a first insulating magnetic coupler, wherein a magnetic field applied to the detector region changes a resistance of the conducting path.
    Type: Application
    Filed: August 11, 2015
    Publication date: February 16, 2017
    Inventors: Anthony J. Annunziata, Joel D. Chudow, Daniel C. Worledge
  • Publication number: 20170047511
    Abstract: Embodiments are directed to a sensor having a first electrode, a second electrode and a detector region electrically coupled between the first electrode region and the second electrode region. The detector region includes a first layer having a topological insulator. The topological insulator includes a conducting path along a surface of the topological insulator, and the detector region further includes a second layer having a first insulating magnetic coupler, wherein a magnetic field applied to the detector region changes a resistance of the conducting path.
    Type: Application
    Filed: November 24, 2015
    Publication date: February 16, 2017
    Inventors: Anthony J. Annunziata, Joel D. Chudow, Daniel C. Worledge
  • Patent number: 9569712
    Abstract: The present invention provides integrated circuit chips having chip identification aspects. The chips include magnetic tunnel junction (MTJ) structures, and more specifically, include permanent bit strings used for chip identification and/or authentication. Systems and processes for chip identification are also disclosed herein. The MTJ element structures provided herein can have a defined resistance profile such that the intrinsic variability of the MTJ element structure is used to encode and generate a bit string that becomes a fingerprint for the chip. In some embodiments, an oxygen treatment covering all or a selected portion of an array of MTJ elements can be used to create a mask or secret key that can be used and implemented to enhance chip identification.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 14, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Chandrasekharan Kothandaraman, Philip L. Trouilloud
  • Patent number: 9553128
    Abstract: A technique relates to a linear magnetoresistive random access memory (MRAM) device. A linear magnetic tunnel junction structure includes a non-magnetic tunnel barrier on top of a free layer and a reference layer on top of the non-magnetic tunnel barrier, where the linear magnetic tunnel junction structure is in a line. Bottom contacts are separated from one another by a column space while the plurality of bottom contacts are self-aligned to the linear magnetic tunnel junction structure, such that the plurality of bottom contacts are in the line with and underneath the linear magnetic tunnel junction structure. The bottom contacts abut a bottom of the linear magnetic tunnel junction structure. MRAM devices are formed by having non-conducting parts of the free layer isolating individual interfaces between the bottom contacts and the free layer. The MRAM devices are formed in the line of the linear magnetic tunnel junction structure.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: January 24, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Michael C. Gaidis, Rohit Kilaru
  • Patent number: 9553257
    Abstract: A technique relates to a linear magnetoresistive random access memory (MRAM) device. A linear magnetic tunnel junction structure includes a non-magnetic tunnel barrier on top of a free layer and a reference layer on top of the non-magnetic tunnel barrier, where the linear magnetic tunnel junction structure is in a line. Bottom contacts are separated from one another by a column space while the plurality of bottom contacts are self-aligned to the linear magnetic tunnel junction structure, such that the plurality of bottom contacts are in the line with and underneath the linear magnetic tunnel junction structure. The bottom contacts abut a bottom of the linear magnetic tunnel junction structure. MRAM devices are formed by having non-conducting parts of the free layer isolating individual interfaces between the bottom contacts and the free layer. The MRAM devices are formed in the line of the linear magnetic tunnel junction structure.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: January 24, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Michael C. Gaidis, Rohit Kilaru
  • Publication number: 20170005135
    Abstract: A technique relates to a linear magnetoresistive random access memory (MRAM) device. A linear magnetic tunnel junction structure includes a non-magnetic tunnel barrier on top of a free layer and a reference layer on top of the non-magnetic tunnel barrier, where the linear magnetic tunnel junction structure is in a line. Bottom contacts are separated from one another by a column space while the plurality of bottom contacts are self-aligned to the linear magnetic tunnel junction structure, such that the plurality of bottom contacts are in the line with and underneath the linear magnetic tunnel junction structure. The bottom contacts abut a bottom of the linear magnetic tunnel junction structure. MRAM devices are formed by having non-conducting parts of the free layer isolating individual interfaces between the bottom contacts and the free layer. The MRAM devices are formed in the line of the linear magnetic tunnel junction structure.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 5, 2017
    Inventors: Anthony J. Annunziata, Michael C. Gaidis, Rohit Kilaru
  • Publication number: 20170005260
    Abstract: A technique relates to a linear magnetoresistive random access memory (MRAM) device. A linear magnetic tunnel junction structure includes a non-magnetic tunnel barrier on top of a free layer and a reference layer on top of the non-magnetic tunnel barrier, where the linear magnetic tunnel junction structure is in a line. Bottom contacts are separated from one another by a column space while the plurality of bottom contacts are self-aligned to the linear magnetic tunnel junction structure, such that the plurality of bottom contacts are in the line with and underneath the linear magnetic tunnel junction structure. The bottom contacts abut a bottom of the linear magnetic tunnel junction structure. MRAM devices are formed by having non-conducting parts of the free layer isolating individual interfaces between the bottom contacts and the free layer. The MRAM devices are formed in the line of the linear magnetic tunnel junction structure.
    Type: Application
    Filed: November 23, 2015
    Publication date: January 5, 2017
    Inventors: Anthony J. Annunziata, Michael C. Gaidis, Rohit Kilaru
  • Patent number: 9536925
    Abstract: A technique relates to an MRAM system. A conformal film covers trenches formed in an upper material. The upper material covers conductive islands in a substrate. The conformal film is selectively etched to leave sidewalls on the trenches. The sidewalls are etched into vertical columns self-aligned to and directly on top of the conductive islands below. A filling material is deposited and planarized to leave exposed tops of the vertical columns. An MTJ element is formed on top of the filling material and exposed tops of the vertical columns. The MTJ element is patterned into lines corresponding to the vertical columns, and each of the lines has a line MTJ element self-aligned to one of the vertical columns. Line MRAM devices are formed by patterning the MTJ element into the lines. Each of line MRAM devices respectively include the line MTJ element self-aligned to the one of the vertical columns.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: January 3, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Joel D. Chudow, Michael C. Gaidis, Rohit Kilaru
  • Patent number: 9537086
    Abstract: A technique relates to a linear magnetoresistive random access memory (MRAM) device. A linear magnetic tunnel junction structure includes a non-magnetic tunnel barrier on top of a reference layer and a free layer on top of the non-magnetic tunnel barrier, where the linear magnetic tunnel junction structure is in a line. Magnetoresistive random access memory (MRAM) devices are formed of the reference layer, the non-magnetic tunnel barrier, and the free layer, each of the MRAM devices are in the line. Self-aligned contacts are formed on top of the linear magnetic tunnel junction structure, and the self-aligned contacts individually define the MRAM devices. The self-aligned contacts are separated from one another in the line. Bottom conductive vias are underneath the linear magnetic tunnel junction structure. The bottom conductive vias abut the reference layer of the linear magnetic tunnel junction structure.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: January 3, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Rohit Kilaru
  • Patent number: 9536926
    Abstract: Magnetic tunnel junction antifuse devices are protected from degradation caused by programming voltage drop across the gates of unselected magnetic tunnel junction antifuses by connecting said magnetic tunnel junction serially with a first field effect transistor and a second field effect transistor, the first field effect transistor having its gate connected to a positive supply voltage while the gate of the second field effect transistor is switchably connected to a programming voltage.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: January 3, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, John K. Debrosse, Chandrasekharan Kothandaraman
  • Publication number: 20160380027
    Abstract: A technique relates to an MRAM system. A conformal film covers trenches formed in an upper material. The upper material covers conductive islands in a substrate. The conformal film is selectively etched to leave sidewalls on the trenches. The sidewalls are etched into vertical columns self-aligned to and directly on top of the conductive islands below. A filling material is deposited and planarized to leave exposed tops of the vertical columns. An MTJ element is formed on top of the filling material and exposed tops of the vertical columns. The MTJ element is patterned into lines corresponding to the vertical columns, and each of the lines has a line MTJ element self-aligned to one of the vertical columns. Line MRAM devices are formed by patterning the MTJ element into the lines. Each of line MRAM devices respectively include the line MTJ element self-aligned to the one of the vertical columns.
    Type: Application
    Filed: October 22, 2015
    Publication date: December 29, 2016
    Inventors: Anthony J. Annunziata, Joel D. Chudow, Michael C. Gaidis, Rohit Kilaru
  • Patent number: 9525125
    Abstract: A technique relates to a linear magnetoresistive random access memory (MRAM) device. A linear magnetic tunnel junction structure includes a non-magnetic tunnel barrier on top of a reference layer and a free layer on top of the non-magnetic tunnel barrier, where the linear magnetic tunnel junction structure is in a line. Magnetoresistive random access memory (MRAM) devices are formed of the reference layer, the non-magnetic tunnel barrier, and the free layer, each of the MRAM devices are in the line. Self-aligned contacts are formed on top of the linear magnetic tunnel junction structure, and the self-aligned contacts individually define the MRAM devices. The self-aligned contacts are separated from one another in the line. Bottom conductive vias are underneath the linear magnetic tunnel junction structure. The bottom conductive vias abut the reference layer of the linear magnetic tunnel junction structure.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: December 20, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony J. Annunziata, Rohit Kilaru
  • Patent number: 9515252
    Abstract: A method of making a magnetic random access memory (MRAM) device comprising forming a magnetic tunnel junction on an electrode, the magnetic tunnel junction comprising a first reference layer, a free layer, and a first tunnel barrier layer; and depositing an encapsulating silicon nitride film on and along sidewalls of the magnetic tunnel junction; wherein the silicon nitride film has a N:Si ratio from 0.1 to 1. An MRAM device made by the above method is also disclosed.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: December 6, 2016
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Anthony J. Annunziata, Chandrasekaran Kothandaraman, Gen P. Lauer, JungHyuk Lee, Nathan P. Marchack, Deborah A. Neumayer, Eugene J. O'Sullivan, Jeong-Heon Park
  • Patent number: 9515251
    Abstract: A mechanism is provided for fabricating a thermally assisted magnetoresistive random access memory device. A bottom thermal barrier is formed on a bottom contact. A magnetic tunnel junction is formed on the bottom thermal barrier. The magnetic tunnel junction includes a top ferromagnetic layer formed on a tunnel barrier. The tunnel barrier is formed on a bottom ferromagnetic layer. A top thermal barrier is formed on the top ferromagnetic layer. A top contact is formed on the top thermal barrier. The top contact is reduced to a first diameter. The tunnel barrier and the bottom ferromagnetic layer each have a second diameter. The first diameter of the top contact is smaller than the second diameter.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: December 6, 2016
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, CROCUS TECHNOLOGY SA
    Inventors: Anthony J. Annunziata, Lucian Prejbeanu, Philip L. Trouilloud, Daniel C. Worledge
  • Publication number: 20160351679
    Abstract: Embodiments of the invention include a method for fabricating a semiconductor device and the resulting structure. A substrate is provided. A plurality of metal portions are formed on the substrate, wherein the plurality of metal portions are arranged such that areas of the substrate remain exposed. A thin film layer is deposited on the plurality of metal portions and the exposed areas of the substrate. A dielectric layer is deposited, wherein the dielectric layer is in contact with portions of the thin film layer on the plurality of metal portions, and wherein the dielectric layer is not in contact with portions of the thin film layer on the exposed areas of the substrate such that one or more enclosed spaces are present between the thin film layer on the exposed areas of the substrate and the dielectric layer.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 1, 2016
    Inventors: Anthony J. Annunziata, Ching-Tzu Chen, Joel D. Chudow
  • Publication number: 20160351840
    Abstract: Embodiments of the invention include a method for fabricating a semiconductor device and the resulting structure. A substrate is provided. A plurality of metal portions are formed on the substrate, wherein the plurality of metal portions are arranged such that areas of the substrate remain exposed. A thin film layer is deposited on the plurality of metal portions and the exposed areas of the substrate. A dielectric layer is deposited, wherein the dielectric layer is in contact with portions of the thin film layer on the plurality of metal portions, and wherein the dielectric layer is not in contact with portions of the thin film layer on the exposed areas of the substrate such that one or more enclosed spaces are present between the thin film layer on the exposed areas of the substrate and the dielectric layer.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 1, 2016
    Inventors: Anthony J. Annunziata, Ching-Tzu Chen, Joel D. Chudow