Patents by Inventor Aurelie Humbert

Aurelie Humbert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120260732
    Abstract: A sensor (2) for sensing a first substance and a second substance, the sensor comprising first (3) and second (5) sensor components each comprising a first material (20), the first material being sensitive to both the first substance and the second substance, the sensor further comprising a barrier (18) for preventing the second substance from passing into the second sensor component (5).
    Type: Application
    Filed: July 16, 2010
    Publication date: October 18, 2012
    Applicant: NXP B.V.
    Inventors: Aurelie Humbert, Youri Victorovitch Ponomarev, Roel Daamen, Matthias Merz
  • Publication number: 20120249168
    Abstract: Disclosed is a liquid immersion sensor comprising a substrate (10) carrying a conductive sensing element (20) and a corrosive agent (30) for corroding the conductive sensing element, said corrosive agent being immobilized in the vicinity of the conductive sensing element and being soluble in said liquid.
    Type: Application
    Filed: November 29, 2010
    Publication date: October 4, 2012
    Applicant: NXP B.V.
    Inventors: Aurelie Humbert, Matthias Merz, Roel Daamen, Youri Victorovitch Ponomarev
  • Publication number: 20120234079
    Abstract: Disclosed is a sensor for detecting a component (20) of an atmosphere, the sensor comprising a sensing surface (14, 16) covered by a barrier layer (18) of a material switchable between respective layer orientations that have permeability to the component. A NFC device comprising such a sensor, a package incorporating the NFC device and a method of manufacturing the sensor are also disclosed.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 20, 2012
    Applicant: NXP B.V.
    Inventors: Aurelie Humbert, Dirk Gravesteijn, Pit Teunissen, Cornelis Wilhelmus Maria Bastiaansen
  • Publication number: 20120112294
    Abstract: A method of manufacturing an integrated circuit having a substrate comprising a plurality of components and a metallization stack over the components, the metallization stack comprising a first sensing element and a second sensing element adjacent to the first sensing element.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 10, 2012
    Applicant: NXP B.V.
    Inventors: Marcus Van Dal, Aurelie Humbert, Matthias Merz, Youri Victorovitch Ponomarev
  • Publication number: 20110303829
    Abstract: The light dose received by perishable goods is an important parameter in determining the lifetime of those goods. A light sensor (30) is described having a photosensitive element (18) which changes its material property according to the light dose received. This change can be detected electrically by electrodes (12, 14) in the light sensor. Because the change in material property is permanent, this removes the need for a memory to store a value representing the light dose received by the light sensor.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 15, 2011
    Applicant: NXP B.V.
    Inventors: David Tio Castro, Aurelie Humbert
  • Publication number: 20110296912
    Abstract: Disclosed is an integrated circuit comprising an electrode arrangement for detecting the presence of a liquid, said electrode arrangement comprising a first electrode and a second electrode, wherein, prior to exposure of the electrode arrangement to said liquid, a surface of at least one of the first electrode and second electrode is at least partially covered by a compound that is soluble in the liquid; the electrical properties of the electrode arrangement being dependent on the amount of the compound covering said surface. An package and electronic device comprising such an IC and a method of manufacturing such an IC are also disclosed.
    Type: Application
    Filed: December 7, 2010
    Publication date: December 8, 2011
    Applicant: NXP B.V.
    Inventors: Matthias Merz, Roel Daamen, Aurelie Humbert, Youri Victorovitch Ponomarev
  • Publication number: 20110185810
    Abstract: A sensor senses a magnitude of a physical parameter of the sensor's environment. The sensor has first and second electrodes, and a material layer between them. The material has an electrical property, e.g., capacitance or resistance, whose value depends on the magnitude of the physical parameter. The first electrode is formed in a first layer, and the second electrode is formed in a second layer, different from the first layer. The first layer has a trench and an elevation next to the trench. The trench has a bottom wall and a side wall. The material is positioned on the bottom wall and on the side wall and on top of the elevation. The trench accommodates at least a part of the second electrode. The second electrode leaves exposed the material formed on top of the elevation.
    Type: Application
    Filed: September 10, 2009
    Publication date: August 4, 2011
    Applicant: NXP B.V.
    Inventors: Aurelie Humbert, Matthias Merz
  • Publication number: 20110146400
    Abstract: A capacitive sensor for detecting the presence of a substance includes a plurality of upstanding conductive pillars arranged within a first layer of the sensor, a first electrode connected to a first group of the pillars, a second electrode connected to a second, different group of the pillars, and a dielectric material arranged adjacent the pillars, for altering the capacitance of the sensor in response to the presence of said substance.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 23, 2011
    Applicant: NXP B.V.
    Inventors: Aurelie HUMBERT, Matthias MERZ, Youri Victorovitch PONOMAREV, Roel DAAMEN, Marcus Johannes Henricus van DAL
  • Publication number: 20110079649
    Abstract: A sensor comprising a silicon substrate having a first and a second surface, integrated circuitry provided on the first surface of the silicon substrate, and a sensor structure provided on the second surface of the silicon substrate. The sensor structure and the integrated circuitry are electrically coupled to each other.
    Type: Application
    Filed: September 24, 2010
    Publication date: April 7, 2011
    Applicant: NXP B.V.
    Inventors: Roel DAAMEN, Aurelie HUMBERT, Matthias MERZ, Youri Victorovitch PONOMAREV
  • Publication number: 20110018097
    Abstract: Disclosed is an integrated circuit (IC) comprising a substrate (10) including a plurality of circuit elements and a metallization stack (20) covering said substrate for providing interconnections between the circuit elements, wherein the top metallization layer of said stack carries a plurality of metal portions (30) embedded in an exposed porous material (40) for retaining a liquid, said porous material laterally separating said plurality of metal portions. An electronic device comprising such an IC and a method of manufacturing such an IC are also disclosed.
    Type: Application
    Filed: July 26, 2010
    Publication date: January 27, 2011
    Applicant: NXP B.V.
    Inventors: Youri Ponomarev, Aurelie Humbert, Roel Daamen
  • Publication number: 20110006352
    Abstract: A read only memory is manufactured with a plurality of transistors (4) on a semiconductor substrate (2). A low-k dielectric (10) and interconnects (14) are provided over the transistors (4). To program the read only memory, the low-k dielectric is implanted with ions (22) in unmasked regions (20) leaving the dielectric unimplanted in masked regions (18). The memory thus formed is difficult to reverse engineer.
    Type: Application
    Filed: March 5, 2009
    Publication date: January 13, 2011
    Applicant: NXP B.V.
    Inventors: Aurelie Humbert, Pierre Goarin, Romain Delhougne
  • Patent number: 7829449
    Abstract: An electronic integrated circuit is fabricated by forming on a substrate, of which a part is composed of absorbing material, a portion made of a sacrificial material. The sacrificial material includes cobalt, nickel, titanium, tantalum, tungsten, molybdenum, gallium, indium, silver, gold, iron and/or chromium. A rigid portion is then formed in fixed contact with the substrate, on one side of the portion of sacrificial material opposite to the part of the substrate composed of absorbing material. The circuit is heated such that the sacrificial material is absorbed into the part of the substrate composed of absorbing material. A substantially empty volume is thus created in place of the portion of sacrificial material. The volume that is substantially empty can replace a dielectric material situated between the electrodes of a capacitor.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: November 9, 2010
    Assignees: STMicroelectronics (Crolles 2) SAS, Koninklijke Phillips Electronics N.V.
    Inventors: Christophe Regnier, Aurelie Humbert
  • Publication number: 20100192688
    Abstract: A sensor senses a characteristic of an environment, e.g., humidity. The sensor has a substrate with strips of material that is sensitive to corrosion as a result of the characteristic. The strips are configured to respond differently to the characteristic. By means of repeatedly measuring the resistances of the strips, the environment can be monitored in terms of accumulated exposure to the characteristic. The strips are manufactured in a semiconductor technology so as to generate accurate sensors that behave predictably.
    Type: Application
    Filed: July 30, 2008
    Publication date: August 5, 2010
    Applicant: NXP B.V.
    Inventors: Aurelie Humbert, Youri Victorovitch Ponomarev, Matthias Merz, Romano Hoofman
  • Publication number: 20100001409
    Abstract: The invention relates to a semiconductor device comprising: a substrate (1), the substrate (1) comprising a body (5), the body (5) having a surface, the substrate (1) being provided with an insulating layer (10) on the surface of the body (1);—a conductor (25) with insulating sidewall spacers (22) located in the insulating layer (10), the conductor (25) having a current-flow direction during operation, the conductor (25) having a first width, the insulating sidewall spacers (22) each having a second width being smaller than the first width of the conductor (25), the first width and the second width being measured in a direction perpendicular to the current-flow direction of the conductor (25) and parallel to said surface, the conductor (25) having a first top surface extending parallel to said surface, the insulating sidewall spacers (22) having a second top surface, and airgaps (30) located in the insulating layer (10) adjacent to the insulating sidewall spacers (22), characterized in that the first top surf
    Type: Application
    Filed: October 29, 2007
    Publication date: January 7, 2010
    Applicant: NXP, B.V.
    Inventors: Aurelie Humbert, Romano Hoofman
  • Publication number: 20090297938
    Abstract: A device is provided that includes a battery layer on a substrate, where a first battery cell is formed in the battery layer. The first battery cell includes a first anode, a first cathode, and a first electrolyte arranged between the first anode and the first cathode, where the first anode, the first cathode, and the first electrolyte are arranged in the battery layer such that perpendicular projections onto the substrate of each of the first anode and the first cathode are non-overlapping. A method of manufacturing such device is also provided. A system is also provide that includes such device for supplying power to an electronic device.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 3, 2009
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Romano HOOFMAN, Aurelie Humbert, Matthias Merz, Youri Victorovitch Ponomarev, Remco Henricus Wilhelmus Pijnenburg, Gilberto Curatola
  • Publication number: 20070170538
    Abstract: An electronic integrated circuit is fabricated by forming on a substrate, of which a part is composed of absorbing material, a portion made of a sacrificial material. The sacrificial material includes cobalt, nickel, titanium, tantalum, tungsten, molybdenum, gallium, indium, silver, gold, iron and/or chromium. A rigid portion is then formed in fixed contact with the substrate, on one side of the portion of sacrificial material opposite to the part of the substrate composed of absorbing material. The circuit is heated such that the sacrificial material is absorbed into the part of the substrate composed of absorbing material. A substantially empty volume is thus created in place of the portion of sacrificial material. The volume that is substantially empty can replace a dielectric material situated between the electrodes of a capacitor.
    Type: Application
    Filed: February 10, 2005
    Publication date: July 26, 2007
    Inventors: Christophe Regnier, Aurelie Humbert