Patents by Inventor Barton Lane

Barton Lane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136151
    Abstract: Systems and methods provide a solution for efficiently generating high density plasma for a physical vapor deposition (PVD). The present solution includes a vacuum chamber for a PVD process. The system can include a target located within the vacuum chamber for sputtering a material onto a wafer. The system can include a resonant structure formed by an antenna and a plurality of capacitors. The resonant structure can be configured to provide a pulsed output at a resonant frequency. The resonant structure can be configured to generate, via the antenna and based on the pulsed output, a plasma between the target and a location of the wafer to ionize the material sputtered from the target.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 25, 2024
    Applicant: Tokyo Electron Limited
    Inventors: Barton LANE, Masaki TAKAGI
  • Patent number: 11942307
    Abstract: A method for plasma processing includes: sustaining a plasma in a plasma processing chamber, the plasma processing chamber including a first radio frequency (RF) electrode and a second RF electrode, where sustaining the plasma includes: coupling an RF source signal to the first RF electrode; and coupling a bias signal between the first RF electrode and the second RF electrode, the bias signal having a bipolar DC (B-DC) waveform including a plurality of B-DC pulses, each of the B-DC pulses including: a negative bias duration during which the pulse has negative polarity relative to a reference potential, a positive bias duration during which the pulse has positive polarity relative to the reference potential, and a neutral bias duration during which the pulse has neutral polarity relative to the reference potential.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: March 26, 2024
    Assignee: Tokyo Electron Limited
    Inventors: Zhiying Chen, Barton Lane, Yun Han, Peter Lowell George Ventzek, Alok Ranjan
  • Publication number: 20240038496
    Abstract: A radio frequency sensor assembly includes a sensor casing disposed around a central hole, the sensor casing including a first conductive cover and a second conductive cover. The assembly includes a cavity disposed around the central hole and includes a dielectric material, the cavity being bounded by a first major outer surface and a second major outer surface along a radial direction from a center of the central hole, where the first conductive cover is electrically coupled to the second conductive cover through a coupling region beyond the second major outer surface of the cavity, and electrically insulated from the second conductive cover by the cavity and the central hole. The assembly includes a current sensor electrically insulated from the sensor casing and including a current pickup disposed symmetrically around the central hole, the current pickup being disposed within the cavity and being insulated from the sensor casing.
    Type: Application
    Filed: October 13, 2023
    Publication date: February 1, 2024
    Inventors: Barton Lane, Merritt Funk, Yohei Yamazawa, Justin Moses, Chelsea DuBose, Michael Hummel
  • Publication number: 20240038506
    Abstract: A plasma etching system that includes a plasma processing chamber, a substrate holder disposed in the plasma processing chamber, a RF power source configured to generate a plasma in the plasma processing chamber, a first magnet disposed above the substrate holder, the first magnet configured to apply, in the plasma processing chamber, an azimuthally symmetric magnetic field that is independent from a magnetic field generated by the RF power source, and a second magnet disposed below the substrate holder and configured to modify the azimuthally symmetric magnetic field and create a ring X point between the first magnet and the second magnet, where positions of the first magnet and the second magnet are arranged such that the ring X point is located nearer to an edge of the substrate holder than a center of the substrate holder.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 1, 2024
    Inventors: Barton Lane, Peter Lowell George Ventzek
  • Publication number: 20230402255
    Abstract: What is described is an equipment for plasma processing including: a pedestal configured to hold a wafer; concentric with the pedestal, a focus ring including an insulator, the focus ring being positioned close to an edge region of the wafer when the wafer is held on the pedestal; and a plurality of gas discharge devices embedded in the focus ring, where each gas discharge device is configured to generate a gas discharge plasma confined within the focus ring.
    Type: Application
    Filed: June 9, 2022
    Publication date: December 14, 2023
    Inventors: Barton Lane, Peter Lowell George Ventzek
  • Publication number: 20230377845
    Abstract: An apparatus for plasma processing includes a first resonating structure and a second resonating structure. The first resonating structure is coupled to a first RF generator through a first matching circuit. The second resonating structure surrounds the first resonating structure. The second resonating structure is coupled to a second RF generator through a second matching circuit.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 23, 2023
    Inventors: Merritt Funk, Barton Lane
  • Patent number: 11817296
    Abstract: A radio frequency sensor assembly includes a sensor casing disposed around a central hole, the sensor casing including a first conductive cover and a second conductive cover. The assembly includes a cavity disposed around the central hole and includes a dielectric material, the cavity being bounded by a first major outer surface and a second major outer surface along a radial direction from a center of the central hole, where the first conductive cover is electrically coupled to the second conductive cover through a coupling region beyond the second major outer surface of the cavity, and electrically insulated from the second conductive cover by the cavity and the central hole. The assembly includes a current sensor electrically insulated from the sensor casing and including a current pickup disposed symmetrically around the central hole, the current pickup being disposed within the cavity and being insulated from the sensor casing.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: November 14, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Barton Lane, Merritt Funk, Yohei Yamazawa, Justin Moses, Chelsea DuBose, Michael Hummel
  • Publication number: 20230360889
    Abstract: An apparatus for plasma processing includes a pedestal configured to support a substrate and a conductive structure disposed at the pedestal. The conductive structure is configured to generate a plasma localized at an edge region of the substrate. The conductive structure may be a resonant structure. The apparatus may include a focus ring that has an insulating material with an annular shape defining an interior opening. The conductive structure may be embedded within the insulating material and be configured to generate the plasma along the annular shape and surrounding the interior opening. Processing conditions at the edge region of the substrate may be controlled using the plasma localized at the edge region.
    Type: Application
    Filed: May 3, 2022
    Publication date: November 9, 2023
    Inventors: Barton Lane, Alok Ranjan, Peter Lowell George Ventzek
  • Publication number: 20230282446
    Abstract: An antenna includes an inner structure, an outer structure, and a plurality of interconnecting structures coupling the inner structure to the outer structure. The plurality of interconnecting structures is axisymmetric with respect to a center of the antenna. Each interconnecting structure has an azimuthal component of at least 30 degrees.
    Type: Application
    Filed: February 3, 2022
    Publication date: September 7, 2023
    Inventors: Yohei Yamazawa, Kazuki Moyama, Barton Lane, Merritt Funk
  • Publication number: 20230132660
    Abstract: A radio frequency (RF) system including: a first conductive covering surface, a portion of the first conductive covering surface including a portion of the first outer wall of a first RF device; a second conductive covering surface aligned to the first conductive covering surface, the second conductive covering surface being disposed around the insulating hole; an insulating hole for an RF center conductor extending through the first conductive covering surface and the second conductive covering surface, the first conductive covering surface and the second conductive covering surface being disposed around the insulating hole; a cavity bounded by the first conductive covering surface and the second conductive covering surface, the cavity being an insulating region; and an RF signal pickup disposed within the cavity.
    Type: Application
    Filed: October 29, 2021
    Publication date: May 4, 2023
    Inventors: Chelsea Dubose, Barton Lane, Merritt Funk, Justin Moses, Yohei Yamazawa
  • Publication number: 20230117812
    Abstract: A method for plasma processing includes: sustaining a plasma in a plasma processing chamber, the plasma processing chamber including a first radio frequency (RF) electrode and a second RF electrode, where sustaining the plasma includes: coupling an RF source signal to the first RF electrode; and coupling a bias signal between the first RF electrode and the second RF electrode, the bias signal having a bipolar DC (B-DC) waveform including a plurality of B-DC pulses, each of the B-DC pulses including: a negative bias duration during which the pulse has negative polarity relative to a reference potential, a positive bias duration during which the pulse has positive polarity relative to the reference potential, and a neutral bias duration during which the pulse has neutral polarity relative to the reference potential.
    Type: Application
    Filed: October 15, 2021
    Publication date: April 20, 2023
    Inventors: Zhiying Chen, Barton Lane, Yun Han, Peter Lowell George Ventzek, Alok Ranjan
  • Patent number: 11600474
    Abstract: A radio frequency (RF) system includes a RF power source configured to power a load with an RF signal; an RF pipe including an inner conductor and an outer conductor connected to ground coupling the RF power source to the load; and a current sensor aligned to a central axis of the RF pipe carrying the RF signal. A sensor casing is disposed around the RF pipe, where the sensor casing includes a conductive material connected to the outer conductor of the RF pipe. A gallery is disposed within the sensor casing and outside the outer conductor of the RF pipe, where the current sensor is disposed in the gallery. A slit in the outer conductor of the RF pipe exposes the current sensor to a magnetic field due to the current of the RF signal in the inner conductor of the RF pipe.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: March 7, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Barton Lane, Merritt Funk, Yohei Yamazawa, Justin Moses, Chelsea Dubose, Michael Hummel
  • Publication number: 20230054430
    Abstract: According to an embodiment, an apparatus for a plasma processing system is provided. The apparatus includes an interface, a radiating structure, and conductive offsets. The interface includes a first conductive plate couplable to an RF source, a second conductive plate disposed between the RF source and the first conductive plate, and conductive concentric ring structures disposed between the second conductive plate and a substrate holder. The conductive offsets are arranged to couple the conductive concentric ring structures to the radiating structure.
    Type: Application
    Filed: May 23, 2022
    Publication date: February 23, 2023
    Inventors: Barton Lane, Yohei Yamazawa, Jason Mehigan, Merritt Funk
  • Patent number: 11515122
    Abstract: This disclosure relates to a plasma processing system for VHF plasma processing using a transmission antenna designed to enable a resonant VHF standing wave inside a plasma process chamber used to manufacture semiconductor devices. The system includes a transmission element capable of being electromagnetically coupled to incoming power lines connected to a power source. The transmission element, power transmission lines, and power source form a resonant circuit capable of enabling a VHF standing wave on the transmission element. The transmission element is folded back on itself to reduce the footprint of the antenna, such that the transmission element(s) can be located inside the plasma process chamber. The transmission antenna has three portions, with the first being electromagnetically coupled to the power transmission line, the second being coupled to plasma, and the third being a folded portion that reduces the transmission element's footprint.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: November 29, 2022
    Assignee: Tokyo Electron Limited
    Inventor: Barton Lane
  • Patent number: 11410832
    Abstract: In accordance with an embodiment, a measurement system includes a sensor circuit configured to provide a voltage sense signal proportional to an electric field sensed by the RF sensor and a current sense signal proportional to a magnetic field sensed by the RF sensor; an analysis circuit comprising a frequency selective demodulator circuit configured to: demodulate the voltage sense signal into a first set of analog demodulated signals according to a set of demodulation frequencies, demodulate the current sense signal into a second set of analog demodulated signals according to the set of demodulation frequencies, and determine a phase shift between the voltage sense signal and the current sense signal for at least one frequency of the set of demodulation frequencies; and analog-to-digital converters configured to receive the first and second sets of analog demodulated signals.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: August 9, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Merritt Funk, Yohei Yamazawa, Chelsea Dubose, Barton Lane
  • Patent number: 11393663
    Abstract: Methods and systems are disclosed for focus ring thickness measurement and feedback control within process chambers. For disclosed embodiments, in-chamber sensors measure physical parameters associated with focus rings, and these measurements are used to determine thickness for the focus rings. The thickness determinations can be used to detect when a focus ring should be replaced and can also be used as feedback to adjust the position of the focus rings within the chamber. For one embodiment, measurements from ultrasonic sensors are used to make thickness determinations for focus rings. For further embodiments, these ultrasonic sensors are positioned at end portions of focus ring lift pins. Other sensors can also be used such as capacitive sensors, resistive sensors, and/or other desired sensors. Further variations and implementations can also be achieved using in-chambers sensors to facilitate focus ring thickness determinations.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: July 19, 2022
    Assignee: Tokyo Electron Limited
    Inventors: Merritt Funk, Alok Ranjan, Barton Lane, Peter Ventzek, Justin Moses, Chelsea DuBose
  • Patent number: 11348761
    Abstract: A system includes a plasma chamber coupled to a power source, and an impedance matching network coupled between the power source and the plasma chamber, wherein the impedance matching network comprises an L-shaped network and a first adjustable inductor coupled between an input of the plasma chamber and ground, and wherein the impedance matching network is configured such that, in a predetermined frequency range, an impedance of the impedance matching network and the plasma chamber is substantially equal to an impedance of the power source.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: May 31, 2022
    Assignee: Tokyo Electron Limited
    Inventors: John Carroll, Jianping Zhao, Peter Ventzek, Barton Lane
  • Publication number: 20220076923
    Abstract: A system includes a plasma chamber coupled to a power source, and an impedance matching network coupled between the power source and the plasma chamber, wherein the impedance matching network comprises an L-shaped network and a first adjustable inductor coupled between an input of the plasma chamber and ground, and wherein the impedance matching network is configured such that, in a predetermined frequency range, an impedance of the impedance matching network and the plasma chamber is substantially equal to an impedance of the power source.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 10, 2022
    Inventors: John Carroll, Jianping Zhao, Peter Ventzek, Barton Lane
  • Publication number: 20210407775
    Abstract: A radio frequency (RF) system includes a RF power source configured to power a load with an RF signal; an RF pipe including an inner conductor and an outer conductor connected to ground coupling the RF power source to the load; and a current sensor aligned to a central axis of the RF pipe carrying the RF signal. A sensor casing is disposed around the RF pipe, where the sensor casing includes a conductive material connected to the outer conductor of the RF pipe. A gallery is disposed within the sensor casing and outside the outer conductor of the RF pipe, where the current sensor is disposed in the gallery. A slit in the outer conductor of the RF pipe exposes the current sensor to a magnetic field due to the current of the RF signal in the inner conductor of the RF pipe.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Justin Moses, Barton Lane, Merritt Funk, Chelsea Dubose, Yohei Yamazawa, Michael Hummel
  • Publication number: 20210407770
    Abstract: A radio frequency sensor assembly includes a sensor casing disposed around a central hole, the sensor casing including a first conductive cover and a second conductive cover. The assembly includes a cavity disposed around the central hole and includes a dielectric material, the cavity being bounded by a first major outer surface and a second major outer surface along a radial direction from a center of the central hole, where the first conductive cover is electrically coupled to the second conductive cover through a coupling region beyond the second major outer surface of the cavity, and electrically insulated from the second conductive cover by the cavity and the central hole. The assembly includes a current sensor electrically insulated from the sensor casing and including a current pickup disposed symmetrically around the central hole, the current pickup being disposed within the cavity and being insulated from the sensor casing.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Justin Moses, Barton Lane, Merritt Funk, Chelsea Dubose, Yohei Yamazawa, Michael Hummel